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Preface

This Instructor's Solutions Manual is an ancillary for the fifth edition of Grossman's
Elementary Linear Algebra. It contains detailed solutions to all problems in the text—
including the MATLAB and graphing calculator problems—and in the Applications
Supplement. Below is an overview of all the ancillaries to accompany the main text.

Applications
Supplement

Student Solutions
Manual

MATLAB Manual:
Computer Laboratory
Exercises and M-file
disk

Elementary Linear
Algebra Toolbox
(M-file disk)

HP-48G/GX
Calculator Manual

* one chapter each on linear programming and on Markov
chains and game theory

» available packaged with the text or for separate purchase
* numerous examples and problems

* answers to odd-numbered problems are at the back of the
Applications Supplement

* complete solutions to all the odd-numbered problems in the
text and the Applications Supplement

* computer laboratory exercises and applications using
MATLAB. Each section lists objectives, prerequisites,

and MATLARB features before the lab exercise is presented.
The student is then encouraged to apply concepts
interactively and create an edited diary session. An M-file
disk containing programs of selected applications in the
manual is available free upon request from The MathWorks,
Inc., in either Mac or PC versions.

* MATLAB programs that accompany the main text in either
PC or Mac version are available free upon request from The
MathWorks, Inc.

» calculator enhancement for science and engineering
mathematics using the high-level Hewlett-Packard calculator
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Two Linear Equations in Two Unknowns Section 1.2

Chapter 1. Systems of Linear Equations and Matrices

Section 1.2

1.

4z — 12y =16
—dr 4+ 2y= 6

—10y = 22 hence, y = —11/5 and z = —13/5.
ajjasp — a12021 = (1)(2) - (—3)(—4) =2-12=-10.

14z — Ty = -21
S5z 4+ Ty = 4

19z = —17 hence, £ = —17/19 and y = 3 + 2z = 3 — 34/19 = 23/19.
ajiazs — arzan = (2)(7) — (=1)(5) = 14 - (-5) = 19.

6z — 24y = 15
—6z + 24y = 16

0 = 31 = no solution.
a11Q29 — Q124921 = (2)(12) - (—8)(—3) =24 -24=0.

6x — 24y = 18
—6z + 24y = —18

0= 0 = lines coincide.

aj1Q@22 — G120491 = (2)(12) - (-—8)(-—3) =24-24=0.

6z +y= 3
—4r —y= 8
2z =11 hence,z =11/2and y=3 — 6z =3 - 33 = -30.

anazz — aizan = (6)(=1) — (1)(—4) = -6 — (-4) = -2.

9z + 3y =0
2¢ — 3y =0
11z =0 hence, z=0and y = -3z = 0.

aiiazz — a12a21 = (3)(=3) — (1)(2) = -9 -2 = —11.

4 — 6y =0
—4r + 6y =0

0 = 0 =>lines coincide; 4x — 6y = 0 implies y = (2/3)z for arbitrary z.
ay1asy — ajaaz = (4)(3) — (=6)(-2) = 12-12 =0.

25z + 10y = 15
4r + 10y = 6

21z = 9 hence, z =9/21 and y = (3 — 5z)/2 = 9/21.
ajiagy — azzaz; = (5)(5) — (2)(2) =25 -4 = 21.
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9.

10.

11.

12.

13.

14.

15.

16.

8z + 12y = 16
9z + 12y = 15
—z = 1 hence, z=—-1and y=(4-2z)/3=2.

a11a22 — ay2a2 = (2)(4) - (3)(3) =8 -9 =-1.

ax +by= ¢
ar —by= ¢
2azx = 2¢ hence, ¢ = c¢/a (assuming ¢ # 0) and y = (¢ — az)/b =0

(assuming b # 0). If a = 0 and b # 0, then there are no solutions unless ¢ = 0, in which case y = 0
and any z is a solution. If @ # 0 and b = 0, then £ = ¢/a and any y is a solution. Finally, if both a
and b are zero, then there are no solutions unless ¢ = 0, too, in which case any z and y gives a solu-

tion. a11Q22 — Q12a21 = a(—b) — ba = —2ab.

a’r + aby= ac
b2z + aby= be
(a® — b%)z = ac — bc hence, z = c¢(a — b)/(a? — b?) = ¢/(a + b)

(assuming a? — b2 # 0) and y = (c — az)/b = c/(a +b) also. If a? — b? = 0, then @ = %b; if a =b#0,
then the equations are the same, and y = (¢/a) — = and any z gives a solution. If a = —b, then there
are no solutions unless ¢ = 0, in which case any z and y give a solution if b = 0, and if b # 0,y = =
with any z gives a solution. ajjas; — ajsaz; = aa — bb = a? — b2,

a’x — aby= ac

b2z + aby= bd
(a? + b%)z = ac + be hence, = = (ac + bd)/(a? + b?)

(assuming a # 0 and b # 0) and y = (d — bz)/a = ad — be.

ajjaz; — ajaaz = aa — (—b)b = a? + b2.

We need —ab — ab = —2ab # 0. Therefore, we need @ # 0 and b # 0.

We need a? — b2 = 0. Therefore, a = b or a = —b. If a = b, then ¢ can be any real number; if a = —b

2

then only ¢ = 0 gives a solution.

We need a? + b2 = 0. Therefore, a = 0 and b = 0. We would also need either ¢ or d to be non-zero.

3z — 3y =21
2z + 3y = 1
5z = 22 hence, £ =22/5 and y = (1 — 2z)/2 = -13/5.




17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

Two Linear Equations in Two Unknowns Section 1.2

—4zr + 2y = 8
4 — 21/ = 6
0 = 14 = no point of intersection.

12z — 18y = 21
122 — 18y = 24

0 = —3 = no point of intersection.
122 — 18y = 30
122 — 18y = 30

0= 0 = lines coincide.

3z +y=14
-5z +y=2
8z =2 hence, z =1/4 and y = 4 - 3z = 13/4.

6x + 8y =10
6 — Ty= 8
15y = 2 hence, y = 2/15 and ¢ = (5 — 4y)/3 = 67/45.

Let m; = the slope of L and my = the slope of L, .
my=1,my=-1. L:z—y=6,and L) :z4+y=0
Point of intersection: (3,—3). d=+/(3—-10)2+(-3-10)2 =32

my =—2/3;my=3/2. L:2z+3y=-1,and L) : 22+ 3y =10
Point of intersection: (—2/13,-3/13)
d=/(-2/13-0)2+(-3/13-0)% = /1/13

my = —3; mg = 1/3. L:3z+y=7and L, :z—3y=-5
Point of intersection: (8/5,11/5)
d=/(B5=1)2+ (11/5 - 2)% = \/2/5

my =5/6; my =~6/5. L:5z—6y=3,and L : 6z 4 5y = 28
Point of intersection: (3,2)

d=+/(3=2)2 + (2-16/5)% = \/61/25

my =5/2; my =-2/5. L:-5z+2y=-2,and Ly :2z+ 5y = -5
Point of intersection: (0,—1)

d=/(5-02+(-3+1)2=29

3
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27.

28.

29.

30.

31.

32.

33.

my =-1/2,my=2. L:3z+4+6y=3,and L, :2z—-y=17
Point of intersection: (7,—3)

d=+/B =72 +(-1+3°=5

4z — 6y = 2
dz + 6y = 12
T = 14 hence, z =2 and y = (12-3z)/6=1.

Then, we need the distance between (2, 1) and 2z —y = 6.
my=2;mp=~1/2. L:2e—y=6,and L, :x+2y=4
Point of intersection: (16/5,2/5)

d=/(6/5-2)2+ (2/5-1)? = 3v5/5

my = —a/b; my =bfa. L:azx+by=c,and Ly :az+by =bx —ay
ac + bz, — aby, bec — abz, + a%yl
a? + b2 ’ a? + b2
Then d = |az; + by; — c|/Va? + b? after a lot of algebra.

Point of intersection: (

Let £ = number of birds and y = number of beasts.
Then z + y = 60;
2z + 4y = 200. Hence = = 20 and y = 40.

If aj1a22 — ajsas; = 0, then ajiaze = aj2a2;. Assuming ajzaze # 0, and dividing both sides of the
equation by ajzasz; we get aji/a1z = az1/azz. This implies —a;; /a2 = —az1/az2. Solving each linear
equation of system (1) for y we get y = —a11/a122 + b1/a12 and y = —az1/a22z + bz/azz. These lines
have slope —aj1/a12 and —az1/az; respectively. Slopes are equal. Therefore the lines are parallel. If
a1z = 0, then from ajjaz; = 0 and aj; # 0, we get aza = 0. So the lines are parallel because they are

both vertical. If azp = 0 similar reasoning holds.

Suppose otherwise, i.e., suppose that ajjazs — aj2as1 = 0. Then #31 shows that the lines given in sys-
tem (1) are parallel. Thus system (1) either has an infinite number of solutions or no solution. This

contradicts the assumption that the system has a unique solution. Result follows.

If aj1az2 — ajaas; # 0 then a11a22 # a12a21. Dividing both sides of the equation by ajzazs we get
aji/aiz # asi/aza. Thus —a11/a12 # —aa1/azz. Hence the slopes of the lines in system (1) are not
equal (see solution to #31). Thus the lines are not parallel. Therefore system (1) has a unique solu-

tion.



34.

35.

36.

37.

Two Linear Equations in Two Unknowns Section 1.2

Let z = number of cups and y = number of saucers.

Then, 3z + 2y= 480 Eq. 2 -10 Eq. 1: =5z = —400
25z + 20y = 4400;
hence, z = 80 and y = 120.

3z + 2y= 480 Eq. 2 -5Eq. 1: 0=0
15z + 10y = 2400.
So, these two lines coincide; hence y = (480 — 3z)/2 where 0 < z < 160, to force y > 0.

3z + 2y = 480. Eq. 2 -5 Eq. 1: 0 =100,
15z + 10y = 2500
so this system of equations has no solution.

Let z = number of ice-cream sodas and y = number of milk shakes.
Then, =+ y=160; Eq. 2 -4 Eq. 1: —y = -128.

4z + 3y = 512
Hence, y = 128, £ = 160 — y = 32.
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Section 1.3

1-2 3] 11\ R2—=-4Ri+R; (1 .2 3| 11\ Rs—3Rs /1 -2 3| 11
1. 14 1 -1 4 ) Rs—=-2R1+Rs |0 9 -13 40| R Z Rs |0 1 -1 -4
09 -

2-1 3| 10 . \o 3 -3]| -12 13 | -40
R3—>—%R3
Ry — 2R+ R, 101 3 R, — Rs + R 100 2
Rs——9R +Rs [0 1 -1 -4 2T Lo 10| -3]. (2 -3,1) is the unique solution.
00-4| -4) Fa—-RetRi\gog 1| 1

15 Ry > -5Ri+R; (1 3 -4 15
-16 Rs — 2R, + R3 0 -15 28 -91

18 0 7 -2 48

3 2 -10 -3 21 6

——

21 6 18 R; - Ri1+Rs 13 -4
2. 50 8 -16 Ry 2 R; 50 8

R; >2R3+R: (1 3 -4| 15\ Rs—-7Rz+Rs (13 -4 15
R, 2 R; 01 -24 -5 Rg-»ﬁRa 01 -24 -5 | . Use back substitution to
_ \No7 2| 48 00 1| 05
find the solution (—4,7, %)
R1—+%R1
36 6| 9\ n . smam (1 2 2|3\ Ro—2atR (12 -2]3
3.1 2-5 4| 6] T 1o -9 8| 0| R—o-irR, [01-8/9| 0. Letzs
116 -14 | -3) Be~Ri+R \g 18 .16 | 0 . \oo ofo
be arbitrary. Use back substitution to find the solutions (3 + 2z3, 3z, z3).
3 6 6|09 Fa = sha 1 2 2| 3 1 221 3
- — —2R1 + R - R; = 2R, +R h
4 (2 5 alg| B2ty o gl o) 7R g 9 8| 0. The bot
5 98 -26 |-8) fe—~ 5RitRs \ g 18 _16 |-23 —— \o0 0 0 |-23

tom row is equivalent to the equation 0 = 23, which is impossible. So the system has no solution.

R3; — —R3
1 1-1|7\ Re—o—4Ri+Re (1 11| 7\ o .0 o (1 10| 21
5 14 -1 5|4| Ra——2Ri+Rs [0 -5 9 |-24 2 2T o -5 0 |-150
2 2-3|0 o \0 o0-1]|-14) PB—BtR \g 91| 14
Ry — —1R; 100]-9
Ri—-Ry+R |01 0]30].(-9,30,14) is the unique solution.
. \oo1]14

R3 - —R2 + R3

7\ R2—-4Ri+R; (1 1 -1| 7 R 1R 10 4/5|12/5

4| Rs—-6R +Rs [0 -5 9 |-24 2TTE L 01 -9/5 |24/5 |. Let 23
0-5 9(-24) Fa~-FatBRi \g o o 0

be arbitrary. Then (& — 2zs, %‘3 + %x;;, z3) are the solutions.




©

10.

(=]

1

p—

12.

13.

14.

>~

SO - O =

TN TN TN TN

OO = N WD =

1
4
6

m Equations in n unknowns: Gauss-Jordan and Gaussian Elimination Section 1.3

7
4) . The same row operations as in problem 6 gives the equivalent matrix

0) . Since 0 # 1, the system has no solution.
1

2 3|0\ Re—~-4Ri+R (1 -2 3|0\ R—~LiRs /1 -2 3]0

1-1[0] Rem—-2Ri4+R: |0 9-13]0) Ror [0 1 -1]0] B 2Reth
-1 300 . \o 3 3]0 — . \o 9-3]o —_—
2 3]0

1 -110]. (0,0,0) is the unique solution, by back substitution.

0 110

0

0-5 9|0 00 010

0 R3—--R;+Rs (11 -1
0| R—-irR, [01-9/5

110 R; - —-4R; + Ry 1 1-1
510 R3; — ~6R; + R3 0-5 9
3

trary. Use back substitution to find the solutions (—15*-.1:3, "59'173, z3).

02 5|6 R 2 R; 10-2] 4 R; — iR, 10 -2/ 4
10 -2 4 Rz — —2Ry + R3 02 5 6 R3 — —-4R3; + R3 01 5/2 3
24 0 (-2 04 4[-10 00 -6[-22
R3—»—%R3

100/ 34/3

R, — 2R, R .
1 2+ P 010 |-37/6 |. (34/3,—37/6,11/3) is the unique solution.

Ry — —2.5R3 + Ry 001 11/3

Ry - -3R; + Ry

12-1|4 o in 12 -1| 4\ Ri—»=2R+R (10 0 1) L
"\34 2|7 27T \01 -1/2 |5/2 — . \01-12|5/5/2) 73

be arbitrary. Then (-1, % + -;—:ca, x3) are the solutions.

1 2-4]4\ Reo2Ri+R (12 -4 |4
2 -4 8|-8
(4-

00 0 0). Let x5 and z3 be arbitrary. Then

2xy + 4x3, Ty, z3) are the solutions.

S

- R; - 2R + R -
(_é _Z g 4) 22t <1 2 -4 j) Since 0 # —1, the system has no solution.

12-117)7 R, - -3R1+R; (1 2 -11 1|7
36-33
(7 -

-9 00 0

21 00 00 ) Let x5, z3, and z4 be arbitrary. Then

2zy + 3 — x4, 3, T3, z4) are the solutions.

0

0) . Let x3 be arbi-

7
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26 -42]|4 NS I RAT PSR 0 11s
) R; > -Ri +R B Ry — —3R; + R .

15 [ 10-11]5)] ¥Ry 3 103 BT RYE Lo 30
32-20|2) Be3R+R \g 1 g3 |4/ Fe~-1R+Rs \ g 13/3 3|15
qu—%Ra
B lRev g, (100 4/13 ] 20/13
PTEET 2 01 0 -3/13 [-28/13 ). Then (8 — 424, 2 + 324, — 8 + S24,24) are the
Rmi-FR+B \g o1 -9/13 |-45/13

solutions, where z4 is arbitrary.

1-2 1 1|2\ g spsm (121 1|2\ gop (12 1 1] 2
6 | 30 2z-2fs8) T 0 6-1-5-14) *7 0 [0 1-025-025 025
104111 SR T IV TR U T I 2782 g6 -1 5| -14
162 0|7 — \0 4-1 1] 9 — \o 4 -1 1] 9
Ry = —6Fs + K (1)? o2é 02;) 02§ Bs = 2Rs (1)? 02% 02é 02§
V. -v. . l V. -J. . _
Ry — —4R2 + Ry 00 05 -35]|-155 Ry — LRy 0 0 1 71 31 | Use back sub
— \o0 0 0 2 8 00 o0 1| 4

stitution to find the solution (2,1/2, -3, 4).

-2 1 1 2

1 2 1 1 As in 1 R3->-6R2+R3
7 |3 02218 em1s | O 1 -025-025 (025} .
o 41 |1] PO 06 -1 -5|-14 4= —10f2 + 1
5 0 3-1(3/ — \o1w0 -2 -6/|-13 ——
1 -2 1 1} 2\ pomyr (12 1 1 2
0 1-025-0.2510.25 R 2R 0 1-0.25-0.25025) [ o\ . u
0 0 05 -3.5|-15.5 3 T ans 0 0 1 -7 -31| 4 be arblirary. Use

0 0 05 -35]-155 0 0 0 0 0
back substitution to find the solutions (18 — 4z4, —15/2 + 24, —31 + Tx4, z4).

1-2 112 As in 1 -2 1 1 2
3 0 2-2(-8 0 1 -0.25 -0.25 | 0.25 .
18. 0 4-1-111 problem 17 00 05 -351-155 ]| (Just apply the row operations
5 0 3-1/0 ‘ 00 0 0 3
above to the changed last column). Since 0 # 3, the system has no solution.
Ry Z Rs
1 1|4\ R:—-2R1+R: (1 1|4 R o —R 1114 4
19. {2 -3|7] Rs—-3Ri+Rs | 0 -5 |-1 : 2 0 1| 4. Since 0 # 19, the system
3 28 0-1]-4) Fs=sRatRs |\ g19
has no solution.
1 11 4 As in 1 114 R3—--R2+Rs (1 1 4
21237 problem19 | 0 -5 |-1 R; = —iR; 0 1)0.2 . Use back substitution to
3 -2(11 _ 4 \0 -5 |-1 — s \0O0}] O

find the solution (19/5, 1/5).



21.

23.

24.

25.

26.

27.

28.

29.

30.

o

31.

32.

N

33.

(%]

34.

m Equations in n unknowns: Gauss-Jordan and Gaussian Elimination Section 1.3

row echelon form

reduced row echelon form

reduced row echelon form

22. neither as the first nonzero in row 1 is not a 1.

neither as the first nonzero in row 2 is too far left.

reduced row echelon form

reduced row echelon form

neither as zero row 2 is not at “bottom”.

neither as first nonzero in row 3 is too far left.

(
(

(

(

1
0

1)_}
1

16__)1
42 0

2-48
3 58

-6 04

2
3

-4 =2
16

0

-6

1

) row echelon form — (1

01

1-1 1 1-1 1
— |0 6 1} —]0 11/6 | row echelon form
0 11 -7 0 0 1

100
— | 010 | reduced row echelon form

1 -2 4 1-2 4 1-2
-0 11-4] -0 1-4/11}| -0 1-4/11
0-12 28 0 3 -7 0 0 1

100
— 1010
001

)-(
=

1-2-1
079

1011/7
01 9/7

001

reduced row echelon form

1-2 -1
) — (0 19 /7) row echelon form

) reduced row echelon form

4

(1 1?) row echelon form — (é (1)) reduced row echelon form

0) reduced row echelon form

) row echelon form

9
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35.

36.

37.

38.

W N

—7 1-7/2 1-17/2
5/—-1031/2}] —-1{0 1 | row echelon form
-3 0 11 0 0

10
— (0 1) reduced row echelon form
00

(

We have n = 3,1 —ay; = %, l—ay = -2—, and 1 — a3z = %. Then the system is

TN
37T gt T
1 3 1
—le + Zl’z - §$3 =15
1 1 5
—ﬁzl - '?;:L'Z + '613 =30
Using row reduction, we obtain
2/3 -1/2 -1/6 |10 4 -3 -1 60 1 4 -10 |-360
-1/4 3/4 -1/8 {15 — -2 6 -1 120 — 0 14 -21 1-600 —
-1/12 -1/3 5/6 |30 1 4 -10 |-360 0 -19 39 |1500
10 -4 |-1320/7 1 0 0 |3560/49
01 -3/2| -300/7) — | 0 1 0 |2700/49 |. Hence, the outputs needed for supply to equal
0 0 21/2 | 4800/7 0 0 1 [3200/49

demand are z; = 3560/49, ro = 2700/49, and z3 = 3200/49.

As in example 10, we have the following system:

z1 + 3z + 223 = 15,000
z1+4z2+ z3 = 10,000

2z, + 5z + bzs = 35, 000.

Writing an augmented matrix for the system and finding the reduced echelon form, we obtain

1 3 2 [15000 1 3 2 ]15000 1 0 5 [30000
1 411]10000] — [0 1-1]-5000] — |0 1-11-5000}. Since x, 2, and 3 must be
2 5 5 |35000 0 -1 11| 5000 00 0 0

greater than or equal to zero, we must have ; = —5z3 + 30,000 > 0 and z2 = z3 — 5000 > 0.

Hence, the populations that can be supported are 5,000 < z3 < 6,000, z1 = 30,000 — 5z3, and

z2 = —b, 000 + z3. The solution is not unique.

Let dg dr, and ds denote the number of days spent in the respective countries. The information
gives the following system of equations:
30dg + 20dF + 20ds = 340
v 20dg + 30dF + 20ds = 320
10dg + 10dr + 10ds = 140



39.

40.

41.

42.
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14 1 1 1/(14 10 1|10 1
32] =101 0f{4]—>]010|4]—-1]0
34 0-1-11-8 00-11}-4 0

Let sp, sy, and sy denote the respective number of shares. The information gives the following sys-

Upon reducing, we obtain

30 20 20 |340 111
20 30 20 |320]) — | 2 3 2
140 3 22

10 10 10
Hence, dg = 6, dp = 4, and dg = 4.

o = o
- O

BN "N~
N—

tem of equations:
—sp — 1.5sg 4+ 0.5spr = —350

1.5sp — 0.5sg + spr = 600

Writing the system as an augmented matrix and reducing to echelon form gives
( -1 -15 05 -350) . (1 15 -0.5 350) (1 0 0.4545 | 390.9

15 -05 1| 600 0 -275 1.75 | 75 0 1 -0.6364 (-27.27
chosen arbitrarily, the broker does not have enough information. If spy = 200, then sg = 300 and

sy = 100.

). Since sps can be

Let f and b denote the number of fighter planes and bombers, respectively. The information gives the

following equations:

F+b=60
6F + 2b = 250
f—26=0
1 1] 60 1 1| 60 1 1| 60 1 1] 60
Then (6 2250 ] — [0 -4 [-110] - [0 1| 20] — [0 1|20 ]. Since 0 # —30, the
1 2] 0 0 -3 | -60 0 -4 |-110 00 [-30

system is inconsistent.

2 -1 3 ]a 1 2 -8 |b-a 1 2 -8 b-a Rs — Rs + R 1 2 -8 b-a

31 5b]—|2-13]| a]—[0-5 19[-2b43a] 77 {0519 -2b+3a].

-5 -5 21 |c -5 -5 21 c 0 5 -19 |5b-5a+c 0 0 0 {3b-2a4c
Hence, the system is inconsistent if 30 — 2a + ¢ # 0.

2 3-1]a 1 -1 3 b 1-1 3 b

R3 — R3 — 2R
1-1 3 ~[0o 5 7lamm) TRy 5 a-2b | . For the system to
3 7-b]c 0 10 -14 [c-3b 0 0 0 |-2a+b+c

be consistent, we must have —2a +b+¢ = 0.
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43. Either a;1, as;, or as; is nonzero, otherwise, the system is either inconsistent or has an infinite num-

ber of solutions. Without loss of generality, we may assume a;; # 0. Elementary row operations

*
an a2 aiz | b 1 aja/a11 aizfan
give | a1 asy azz (b ] — | O agy azs | ¥ | where azs = ag2 — azaiz/ay, azs =
a3 aszz asz |b3 0 a3 azz | *
as3 — 0.21013/&11, a3z = agss — (131012/011, and Q33 = as3z — 031013/011. As before, either (825
1 % x| 1% * |*

or ags is nonzero. Assume ass # 0. Then | 0 azp azs [¥] — [0 1 * |*]. Where § =
0 32 Q33 * 0 0 ,B *

a32aa3/ass + aszs. For the system to have a unique solution, we must have 8 # 0. Simplify 8 to

conclude ayjazzass — ayyaszasy — ajaaziass + ai2a23a3; + a13a21a33 — a13az2a3; # 0.
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CALCULATOR SOLUTIONS 1.3

All solutions to CALCULATOR BOX problems will be given for the TI-85. Each will include a summary of the
input keystrokes which were used to solve each type of problem, the output from the calculator, and the derivation of
the answer from the output. Usually the fullest explanation will accompany the first example of each type of prob-
lem.

Most problems will require calculations to be made on some matrix or vector. Each such input for a problem should
be entered into a variable before the calculations for that problem are begun. Once it is input, its’ value should be
checked before the calculation for the problem is begun, since one of the most frequent causes of incorrect solutions
is faulty input data. (We will not show the data input keystrokes in most cases, except in this first calculator solution
section.) In order to allow the inputs (or outputs) for any problem to be reused or recalled in later problems, we shall
tag the variable name(s) with numbers representing the chapter, section, and problem number; i.e. A1345 will be the
name for the augmented matrix which is the input for chapter 1, section 3, problem 45.

Each summary of input keystrokes follows the practice of the main text by boxing each input function keystroke
(except for character or number keys which are displayed in the Courier font, and for which it is assumed that the
appropriate (ALPHA] or (2nd] (alpha) keystrokes have been entered to allow alphabetic input to start or stop).
When a keystroke sequence has selected a menu item, the named equivalent of that item will be displayed in
Courier Bold inside angle brackets. For example the keystrokes to compute the reduced row echelon form of a
matrix stored in the variable A1345 are displayed as:

<ops> <rref>Al1345 .

We will use the form MATRX ops rref to abbreviate later occurances of such a menu item entry.

There is an alternative to all menu item function references. Since the name of any function, such as rref, is rec-
ognized by the TI-85(even the all caps version RREF), the result above can be produced by the (character) input
rref A1345 or even RREF A1345 . We will ofter use this form of input in presenting solu-
tions.

44. To solve on the TI-85 enter the augmented matrix for the system by [[2.6,—4.3,9.6,21. 62]
[-8.5,3.6,9.1,14.23][12.3,-8.4,-.6,12.61]] Al344
Then compute the reduced row echelon form of A1344 by using the RREF command from the MATRX ops

menu via <ops> <RREF> Al344 ,

to produce:

[ 0 86.1806588556 ]

[ 10
[ 01 0 122.285821022 ]
[ 0 01 33.6853455595 1]

which is the augmented matrix of the eugivalent (solved) system:
%, =86. 1806588556, x, =122.285821022, x3=33. 6853455595.

45. To solve, input the augmented matrix A1345 by [[0,2,-1,-4,2], [1,-1,5,2,-4], [3,3,-7,-1,4],
[-1,-2,3,0,-71] Al1345 , and verify that the matrix has been correctly entered by
scrolling the display to examine all the entries of the input matrix. (Use the arrow keys: E] , E] ,and E] ,
E] if needed.) Note that the "missing" x; in the first equation is entered as a 0 in the first row.

Now either use the MATRX ops menu, as described above, or literally enter RREF A1345 (which requires

the keystrokes (ALPHA) (ALPHA] RREF A (ALPHA) 1345 ) to get:
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[l 1000 -3 ]
[ 01005 ]
[ 001 0 2e-14 ]
{00012 1]

Since elementary row operations produce an augmented matrix of an equivalent system, the solutions to the
original system can be read off from this equivalent (solved) system:

x1=—3, x3=95, X3=2E-14, x4=2.
(The calculator produced 2E-14, rather than the exact answer 0, due to rounding "errors” in its computation; it’s
accuracy is limited (internally) to 13 significant figures, and many computations, like division by 3, may result
in loss of accuracy due to roundoff.)

46. Input the augmented matrix A1346: [[12.47,-2.583,7.161,8.275,-1.205],
[3.472,9.283,11.275,3.606,2.374], [-5.216,—12.816,6.298, 1. 877, 21. 206],
[6.812,5.223,-9.725,-2.306,~-11.466]] A1346 and compute its reduced row echelon form R1346
by entering RREF A1346 R1346 . Since we see the equations are consistent, the solu-
tions are obtained from the last (5th) column: (see problem 47) R1346 (1,5,4,5) ,

[[ 2.22665461875 ] (=x)
[ -1.93595628754 ] (=x)
[ 3.36239929557 ] (=x)
[ -7.01511776944 1] (=x)

47. Input the augmented matrix by [[23.42,-16. 89, 57. 31, 82.6,2158. 36],
[-14.77,38.29,92.36,—4.36,—-1123.02], [-77.21, 71. 26, -16. 55,43.09, 3248. 71],
[91.82,81.43,33.94,-57.22,235.25]] , and store it in A1347 by entering:

(2nd) (ANS) (STO®) A1347 )

Then either follow the 1.44 or 1.45 solutions or produce and store the reduced echelon form in R1347 ("R" for
reduced) via:

RREF A1347 R1347

The reduced echelon form shows the equations are consistent, and the solution is the last (5th) column of
R1347 which can be printed out by entering R1347 (1,5, 4,5) , which yields the submatrix start-
ing at (row=1,col=5) and ending at (row=4,col=5):

[[11.5606292935 ] (= xl)
[27.8933709005 ] (= x2)
[-19.8752502433 ] (= x3)
[42.3460010642 ]} (= x4)

48. From the input:

{[6.1,-2.4,23.3,-16.4,-8.9,121.7] [-14.2,-31.6,-5.8,9.6,23.1,-87.7]
[10.5,46.1,-19.6,-8.8,-41.2,10.8] [37.3,-14.2,62, 14.7,-9.6,61.3]
[.8,17.7,—47.5,-50.2,29.8,-27.8]] 21348 compute and store the reduced echelon form
by RREF Al348 01348 . From the equivalent (consistent) system corresponding to this
new augmented matrix, read off solution from the last (6th) column: 01348 (1,6,5,6)
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([ -4.19625216237 ] (=x,))
[ 3.39806581665 ] (=x,)
[ 5.02950855373 ] (=x;)
[ -2.68699108976 ] (=x,)
[ .651877193675 1] (=x5)

Problems 49-53 ask for the row echelon form of the augmented matrices from the equations in the previous 5 prob-
lems. This will be computed by:

<ops> <ref> A [ENTER

or using only alphabetic and numeric input:

REF A (ENTER) .

49. The row echelon form for A1345 (saved in 1.45) is given by REF A1345 :

([ 1 1 -2.33333333333 -.333333333333 1.33333333333 ]
[ 01 -.5 -2 1 ]
[ 001 -.263157894737 -.526315789474 ]
[ 000 1 2 1]

50. The requested row echelon form is given by REF A1344 :

[[ 1 -.682926829268 -.048780487805 1.02520325203 ]
[ 01 -3.85314009662 -7.50853462158 ]
[ OO0 1 33.6853455595 1]

51. REF A1347 yields:

[[ 1 .886843824875 .369636244827 -.623175778697 2.56207797865 ]
[ 01 .085803613297 -.035964262264 24.6650599263 ]
[ OO 1 -.125426892275 -25.1865775571 ]
{ 00 0 1 42.3460010642 1]

52. REF A1346 yields:

([ 1 -.20713712911 .574258219727 .663592622294 -.096631916599 ]
[ 01 ~.668756846388 -.384149034562 -1.48973311827 ]
[ 00 1 .322120802509 1.10268392998 ]
[ 0O 0 1 =7.01511776944 1]

53. REF A1348 yields:
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[[ 1 -.380697050938 1.66219839142 .394101876676 -.257372654156 1.64343163539 ]
[ 01 -.739622076066 -.258258724306 -.768456034635 ~.128869813714 ]
[ 0O 1 1.29150456157 -1.23451620607 .754494344443 ]
[ 00 0 1 -.245789833397 -2.84721587659 ]
[ 00 0 0 1 .651877193675 11

Problems 54-58 ask for all solutions, rounded to three decimal places, to certain systems with more unknowns
than equations. To solve, first set the displayed precision to three decimal places by

(2nd) MODE) (1) &) () () () ENTER] (EXIT] .

Then compute the reduced echelon form of the augmented matrix via RREF A and write down the
equivalent system for the resulting augmented matrix. If there is a new equation which says 0 = a non-zero num-
ber, then this impossible equation shows the original system is inconsistent, i.e. has no solutions. Other wise, we
can see that if we assign arbirary values to those variables which are not first in any of the resulting equations,
then each equation can be solved for its first variable in terms of the arbitray variables by bringing the terms
involving the arbitrary variables to the right side of the new equations (after changing the signs of those terms).
This gives all possible solutions.

54. The augmented matrix A1354 for the system is obtained by input of [[2.1,4.2,-3.5,12.9]
[-5.9,2.7,9.8,-1.6]] A1354 . Then the reduced row echelon form RREF A1354:

[[ 1 0 -1.662 1.365 ]
[ 01 -.002 2.389 1]

is the augmented matrix of a consistent system. In this equivalent system, we see that transposing the x;
terms to the right side yields the solutions (1.365 + 1. 662x3, 2. 389+. 002x3,x3) with x3 arbitrary.

55. Input the augmented matrix A1355 for the system with [[-13.6,71.8,46.3,-19. 5] [41.3,-75,-82.9, 46.4]
[41.8,65.4,-26.9,34.3]] A1355 . Then the reduced row echelon form RREF A1355:

([ 10 -1.275 .961 ]
[ 01 .403 -.009 ]
[ 000 0 1]

is the augmented matrix of the equivalent consistent system:

X1 —1.275x%;
X . 403X3

.961
-.009°

From this we see that transposing the x3 terms to the right side yields the solutions (.961+1.275x3,
-.009-.403x3, x3) with x; arbitrary.

56. Since this system differs from the previous system only in two right hand side entries

19.5 instead of -19.5 and 35.3 instead of 34.3

the usual input can be omitted and the augmented matrix A1356 can be obtained by copying A1355 and edit-
ing the 4’th column of the copy. (The keystrokes to copy and get to the editing stage are: A1355
A1356 <EDIT> . Then at the Name = prompt enter A1356 (ENTER] (ENTER)

. Now the 4’th column is displayed; use the arrow keys to position the cursor and make the
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changes: delete the "-" and change 34 to 35. Then enter (EXIT) and the new augmented matrix
[[-13.6,71.8,46.3,19.5] [41.3,-75,-82.9,46.4] [41.8,65.4,-26.9, 35. 3]] is stored in A1356.) Then the
reduced row echelon form RREF A1356:

([ 1 0 -1.275 0 ]
[ 01 .403 0]
[ 00O 11]]

is the augmented matrix of an inconsistent system as the last row yields the equation O = 1, Thus there are no
solutions.

57. Input the augmented matrix A1357 for the system with: [[5,-2,11,-16, 12, 105] [-6, 8,-14,-9, 26,-62]
{7,-18,-12,21,~2, 53]] A1357 . Then the reduced row echelon form RREF A1357:

[l 100 -7.616 11.87 31.348 ]
[ 010 -4.876 6.775 11.043 ]
(0

0 1 1.121 -3.072 -2.696 ]]

shows x4 and x5 can be chosen arbitrarily. If we bring the terms involing these variables to the right side we
get solutions ( 31.348+7.616x4-11.87xs, 11.0434+4.876x4-6.775x5,-2.696-1.121x,+3.072xs, X4, Xs).

58. (To illustrate an alternative way to reuse data, we present a solution based on the prior entry of A1359. See
problem 59 for a way to enter A1359.) Just copy A1359 into A1358 and change the {4,6} element by -63
STO»| A1358(4, 6). Then RREF A1358 yields:

([ 1000 11.87 31.348 ]
[ 0100 6.775 11.043 ]
[ 0010 -3.072 -2.696 }
[ 00010 0 1]

from which we read off the solutions (31.348-11.87xs, 11.043-6.775xs, -2.696+3.072xs, 0, x5) with x5 arbi-
trary.

59. An alternative to the usual input of A1359 is to add a new row to A1357. This is done by A1357
21359 and then adding a new row (of zeros) by <{>4,6<}> (STO») (2nd) (MATRX]
<ops><dim>A1359. Now use the MATRX<EDIT> function to change the fourth row elements to - 15,
42, 21, -17, 42, 63. Then the reduced row echelon form RREF A1359 is

[{ 1000 11.87 50.54 ]
[ 0100 6.775 23.33 ]
[ 0010 -3.072 -5.52 }
[0O0O01O0 2.52 1]

from which we read off the solutions (50.54-11.87xs, 23.33-6.775xs, -5.52+3.072xs, 2.52, x5) with x5 arbi-
trary.
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MATLAB Tutorial

The MATLAB input and output for these problems will be printed in this typewriter font. The
symbol >> is the MATLAB prompt. We will often suppress output by use of ;” although you should al-
ways check your input.

1. They can be entered as

> A=[22345; -6-1207;12-134], b=1[-1; 2; 5];
or as

>a=[ 2 2345

-6 -1207

12-1347];

>»b=1[-1

2

51;

2. The augmented matrix is:

> C=[4 1]

C =
2 2 3 4 5 -1
-6 -1 2 0 7 2
1 2 -1 3 4 5

3. Notice that since this problem uses rand, you will get different numbers than those printed here. This
generates a random 3x4 matrix with values between -1 and 1, and then multiplies that by 2.

>> D = 2*%( 2%rand(3,4) - 1)

D =
-1.1242 0.7172 0.0777 -1.7862
-1.8118 1.7388 1.3239 0.1188
0.7165 -0.4660 -1.8617 0.6846

4. This generates a random 4x4 matrix with entries between -10 and 10, and then rounds off to the near-
est integer.

>> B = round( 10*( 2%rand(4,4) - 1) )

B =
-10 4 1 4
~2 2 -8 8
-9 9 3 5
-2 7 -2 -5
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5. This first copies B into K, and then reverses the two rows in K.

> K =B; K([L14],:
K =
-2 7 -2
-2 2 -8
-9 9 3
-10 4 1

(ST}

>> €(3,:) = C(3,:) +

) = K([4 1],:)

-5

w» 1

(-1/2)*C(1,:)

MATLAB Tutorial 1.

C =
2.0000 2.0000 3.0000 4.0000 5.0000 -1.0000
-6.0000 -1.0000 2.0000 (] 7.0000 2.0000
0 1.0000 -2.5000 1.0000 1.5000 5.5000
7.
>> B([2 4],[1 3]) % This is the 2x2 submatrix of B
>> % made from the second and fourth rows
>> % and the first and third columms.
ans =
-2 -8
-2 -2

§. Recall that D from problem 3 was a random matrix, so your values will be different.

>> U = D(:,[3 4])

U =
0.0777 -1.7862
1.3239 0.1188
-1.8617 0.6846

> €(2,:) = €(2,:) +
C =

2.0000 2.0000

0 5.0000

0 1.0000

3%C(1,:)
3.0000 4.0000 5.0000
11.0000 12.0000 22.0000
-2.5000 1.0000 1.5000

-1.0000
-1.0000
5.5000

19
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10. This will generate a random matrix:

11.

>> T = rand(8,7)

Notice that if you type

>> help : % Use this in matlab version 3.5

or

>> help colon % Use this in matlab version 4.0

that 3:8 is the same as [ 34 56 7 8], so
> S = T( 3:8 ,:)

will generate rows 3 through 8 of T'.

The reduced row echelon form of C will be:

>> rref(C)
ans =
1.0000 0 0 -0.1915 -1.4681
0 1.0000 o 1.7447 3.0426
0 0 1.0000 0.2979 0.6170
So that an equivalent system of equations would be:
Ty —-0.19151:4 —146811'5 =

zy  +1.7447z4 +3.0426z5
z3 +0.297924 +0.6170z5

-1.1489
2.4681
-1.2128

—1.1489
2.4681
—1.2128

Instructor’s Manual
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MATLAB 1.3

1. For each problem, first A is entered as the augmented matrix representing the system of equations.
Next R is set to be the reduced row—echelon form of A. R represents a system whose solution, z, is
just the last column of R. Since in each case, the system reduces to one where no variables may be
chosen arbitrarily, there is a unique solution.

For problem 1:

> A=[1-2311; 41 -14; 2 -1 3 10];

>> R = rref(A)
R =
1 0 0 2
0 1 0 -3
0 0 1 1
>> x = R(:,4) % Equivalent system says jth variable
x = % Equal to the jth entry in the last column.
2
-3
1

For problem 2:

> A=[-21618; 5 08 ~-16; 3 2 -10 -3];
>> R = rref(4)
R =
1.0000 0 0 -4.0000
0 1.0000 0 7.0000
0 0 1.0000 0.5000
>> x = R(:,4)
x -
-4.0000
7.0000
0.5000

For problem 5:

> A=[11-17; 4-154; 22 -30];
>> R = rref(4)
R =

1 0 0 -9

0 1 0 30

0 0 1 14
>> x = R(:,4)
x:

-9

30
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For problem 8:

> A=[1-230;41-10;2-130];

>> R = rref(A)
R =
1 0 0 0
0 1 0 0
0 (] 1 0
>> x = R(:,4)
x:
0
0
0

For problem 16:

>»>A=[1-2112;302-2-8;04-1-11; -16-20 7]1;
>>R = rref(A)

R =
1.0000 0 0 0 2.0000
0 1.0000 0 0 0.5000
0 0 1.0000 0 -3.0000
0 0 0 1.0000 4.0000
>> x = R(:,5)
X =
2.0000
0.5000
-3.0000
4.0000

2. For each problem, first A is entered as the augmented matrix representing the system of equations.
Next R is set to be the reduced row—echelon form of A. Since the bottom row of R represents an
equation 0 = 1, there can be no solutions to this system.

For problem 4:

> A =[36-69; 2-546; 528 -26 -8];
>> R = rref(A)
R =
1.0000 0 -0.2222 0
0 1.0000 -0.8889 0
0 0 0 1.0000

For problem 7:

> A =[11-17; 4-154; 613 20];
>> R = rref(4)
R =
1.0000 0 0.8000 0
0 1.0000 -1.8000 0

0 0 0 1.0000
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For problem 13:

>A=[12-414; -2 -4 8 -9];

>> R = rref(A)

R =
1 2 -4 0
0 0 0 1

For problem 18:

> A=[1-2112;302-2-8;04-1-11; 50 3 -10];
>> R = rref(A)
R =

1 0 0 4 0

0 1 0 -2 0

0 0 1 -7 0

(0] 0 0 0 1

3. (i) (a) For the matrix we have

> A=[3510;42-80; 83 -18 0];
>> R = rref(A)

R =
1 0 -3 0
0 1 2 0
0 0 0 0

(b) The pivots have been underlined. (c) An equivalent system of equations would be

T =33 =0
T2 +2$3 =0
(d) No pivot in column 3, so the solution of this system has: z3 arbitrary, z; = 3z3, 3 = —2z3.
(i) (a)
> A =[927 3 312; 927 10 119; 1 3 5 9 6];
>> R = rref(A)
R =
1 3 0 (] 1
0 0 1 0 1
0 0 0 1 0

(c) An equivalent system of equations would be

z1 +3z9 =1
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d) No pivot in column 2 so the solution of this system is: z, arbitrary, 1 = 1 — 3z2, z3 = 1
)

Tq4 = 0.
(iii) (a)

> A =

>> R = rref(A)

R =
1 0 1 -2
0 1 5 0
0 0 0 0

c) An equivalent system of equations would be
q

(d) No pivots in columns 3 and 4 so the solution of this system is:

L

+x3 —2x4

T3 49523

3-—1’3+2$4, 172:1—5:1:3, 5 = —1.
(iv) (a)

> A=[647 5 15 9
859 10 10 8
457 7 -1 7
837 6 22 8
327/29 -12 =-2];

>> R = rref(A)

R =

1.0000 0 0.5000

0 1.0000 1.0000
0 0 0
0 0 0
0 0 0

(c) An equivalent system of equations would be

T

Ts5

0 5

0
1.0000 -3

0

0
+.5z3 +5xs

Ty +lzs

T4 —3:135

[101-27-4;1421-225;303-672];

—

.0000

.0000

z3 and z4 arbitrary, z; =

1.0000

2.0000

-1.0000

(d) No pivots in columns 3 and 5 so the solution of this system is: z3 and 5 arbitrary, z; =
1 - .5z3 — 5z5, £3 = 2 — 3, and ©4 = —1 + Jzs.
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4. (i) Reduce the augmented matrix representing the equations:

> rref( [ 123-1; 0-314; 41-20])

ans =
1.0000 0 0 0.4694
0 1.0000 0 -1.2245
0 0 1.0000 0.3265

From this, the solution is £; = 0.4694, z; = —1.2245 and z3 = 0.3265. Since there is only one
solution, these three planes intersect in exactly one point.

(ii) Reduce the matrix as in (i):

(i)

(iv)

5. (1)

> rref( [ 2-145; 12-36; 43-29])

ans =
1 0 1 0
1 -2 0
0 0 0 1

There are no solutions, i.e. the system is inconsistent. This means the three planes do not inter-
sect.

> rref( [ 2-145; 12-36; 43-217])

ans =
1.0000 0 1.0000 3.2000
0 1.0000 -2.0000 1.4000
0 0 0 0

The solution has z3 arbitrary, £z = 1.4 4+ 23, and z; = 3.2 — z3. The planes intersect in a line.

>> rref( [ 2-424; 3-636; -12-1-2])

ans =
1 -2 i 2
0 0 0 0
0 0 0 0

The solution has z3 and z3 arbitrary, and £; = 2 + 225 — #3. The three planes are identical.

> A=1[12-12;2428; 34-70];

>> D=A;
>> A(2,:) = A(2,:) - 2%A(1,:); % Subtract 2*%R1 from R2.
>> A(3,:) = A(3,:) - 3%A(1,:) % Subtract 3%R1 from R3.
A =

1 2 -1 2

0 0 4 4

0 -2 -4 -6
>> A([2 3],:) = A([3 2], :) % Interchange R2 and R3.
A=

1 2 -1 2

0 -2 -4 -6
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> A(2,:) = A(2,:) / (-2); %, Normalize R2.
>> A(1,:) = A(1,:) - 2#A(2,:) % Subtract 2*R2 from R1.
A=

1 0 -5 -4

0 1 2 3

0 4 4
>> A(3,:) = A(3,:) / 4; % Normalize R3
>> A(2,:) = A(2,:) - 2*A(3,:); % Subtract 2*%R3 from R2.
>> A(1,:) = A(1,:) + B*A(3,:) ' Subtract -5*R3 from R1.
A=

1 0 0 1

0 1 0 1

(] 0 1 1

Compare this with:

>> rref(D)
ans =
1 0 0 1
0 1 0 1
0 0 1 1
(i1)
>>A=[1232; 34-1-3; -2104];
>> D = A;
>> A(2,:) = A(2,:) - 3#A(1,:); ' Subtract 3*R1 from R2.
>> A(3,:) = A(3,:) + 2*%A(1,:) % Subtract -2*%R1 from R3.
A=
1 2 3 2
0 -2 -10 -9
0 5 6 8
>> A(2,:) = A(2,:) / (-2); % Normalize R2.

2%A(2,: % Subtract 2%R2 from R1.
5%A(2,:) % Subtract 5*R2 from R3.

A
-

> A(1,:) = AQ1,:)
>> A(3,:) = A(3,:)

A=
1.0000 0 -7.0000 -7.0000
0 1.0000 5.0000 4.5000
0 0 -19.0000 -14.5000
>> A(3,:) = A(3,:) / (-19); % Normalize R3.

>> A(2,:) = A(2,:) - 5*%A(3,:); ' Subtract 5+#R3 from R2.
>> A(1,:) = A(1,:) + T*A(3,:) % Subtract -7*R3 from R1.

1.0000 0 0 -1.6579
0 1.0000 0 0.6842
0 0 1.0000 0.7632
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(i)

Compare this with:

>> rref(D)
ans =
1.0000 0
0 1.0000
0 0

> A=0[1 2-2 0

-3 -6 12 2
-2 -4

>> D = A;
>> A(2,:
>> A(3,:
>> A(4,:

A(2,:) -
= A(3,:) +
A(4,:) -

~ -
|

O O O
O ooOoN

> A(2,:) =
> A(1,:) =
>> A(3,:) =

|
=
~
w

O O O »
O OOoON

|
=
~
w
-

>> A(3,:) =
>> A(4,:) =
A =

i
[
~
»

1.0000 2.0000
0 0
0 0
0 0

Compare this with:

>> rref(D)
ans =
1.0000 2.0000
0 0
0 0
0 0

0
0

1.0000

1 -2

-4 -19

-5 -34];

2*A(1,:)
3%A(1,:)
1*A(1,:)

N O O
!
»

(3);
2*%A(2,:)
6*A(2,:)

(o]

1.0000

0
0

-1.6579
0.6842
0.7632

% Subtract 2*R1 from R2.
% Subtract -3*R1 from R3.
% Subtract = R1 from R4.

-2
-15
-14
-32

% Normalize R2.
% Subtract -2*%R2 from R1.
% Subtract 6*R2 from R3.

-12
-5
16

-32

% Normalize R3.
% Subtract -4*R3 from R4.

0 -3.0000 -12.0000
0 -2.0000 ~-5.0000
1.0000 1.5000 8.0000
0 0 0
0 -3.0000 -12.0000
0 -2.0000 -5.0000
1.0000 1.5000 8.0000
0 0 0

MATLAB 1.3
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6. (a) First enter A and b and then let C' be the augmented matrix.

(b)

The
(c)
(d)

> A=[12-20;24-10; -3-6122; 12 -2 -4];
>b=1[1; -4; -12; 3];
>> C = [A b]
C =

1 2 -2 0 1

2 4 -1 (o} -4

-3 -6 12 2 -12

1 2 -2 -4 3
>> rref(C) % Reduce the augmented matrix.
ans =

1 2 0 0 0

0 0 1 (0} 0

0 0 0 1 0

0 o] 0 0 1

Since the bottom row represents the equation Oz; + Oz + Oxs + Oz4 = 1, which has no solution,
the system has no solutions.

>> b = 2%A(:,1) + A(:,2) + 3*%A(:,3) - 4*A(:,4)

D =
-2
5
16
14
>> rref([A b])
ans =
1 2 0 0 4
0 0 1 0 3
0 0 0 1 -4
0 0 (] 0 0
solution is ¢4 = —4, z3 = 3, £ is arbitrary, and z; = 4 — 2z.

For any choice of coefficients, there will be a solution.
No, it is not possible. The conjecture is true. For any choice of a; if

b = a1 A(;, 1) + a24(:, 2) + asA(:, 3) + a4 A(:, 4),
then Ax = b will have at least the one solution z; = a;.

Repeating the experiment will generate a random singular matrix A. In each case, if b is a sum
of multiples of columns of A, the system [A b] will have a solution.

>A=[111;234; -2031;
>> b= [4; 9; -7 ];

>> ¢ = [4; 16; 11 ];

>> Aug = [A b c]

Aug =
i 1 i 4 4
2 3 9 ié
-2 0 3 -7 11
>> rref(Aug)
ans =
1 0 0 2 -1
0 1 0 3 2

0 o] 1 -1 3
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The solution to the first system is x = (2,3, —1) and to the second is x = (-1, 2, 3).

(b)

>A=[23-4; 12-3; -15 -11];
>b=1[1; 0; -7];
> ¢ = [-1; -1; -6];
>da=101; 2; -7];
>> Aug = [A b c d]
Aug =
2 3 -4 1 -1 1
1 2 -3 0 -1 2
-1 5 -11 -7 -6 -7
>> rref (Aug)
ans =
i 0 1 2 1 0
0 1 -2 -1 -1 0
0 0 0 0 0 1
For the first system, £3 may be chosen arbitrarily, £; = 2 — z3, 3 = —1 4+ 2x3. For the second system,
z3 may be chosen arbitrarily, £; = 1 — z3, 3 = —1 + 2z3. The third system is inconsistent, and has

no solutions.

(¢) Any columns will generate solutions using the same method as above.

(d) (i) No. Since the number of variables that may be chosen arbitrarily is not determined by the
right hand side, a system cannot have a unique solution with one right hand side and in-
finitely many solutions with another.

(ii) No. A system will have no solutions only when it reduces to a system with zeros on the left
hand side, and nonzeros on the right hand side, so one of the columns on the left will not
have a pivot. However, if a system will have a unique solution if every column on the left has
a pivot. Both cases cannot happen for the same left hand side.

(iii) Yes. In (b) above, there were infinitely many solutions for the first two systems, but no solu-
tion for the third. This happened because there was a column on the left hand side without
a pivot. This missing pivot may or may not appear on the right hand side, causing the sys-
tem to be inconsistent or consistent.

8. (a) If we consider each node in numerical order we find the equations:

Ty =(100 + T3 + Ty + 50)/4, or 4Ty — Ty — Ty =150
Ty =100+ T3 + Ts + T1)/4, oo =Ty + 4Ty — T3 — T5 =100
Ts =(100 4 50 + Ts + T3)/4, or —Ty + 4T3 — Ts =150
Ty= (Ty +Ts +Tr + 50)/4, o =Ty + 4Ty — T5 — Ty = 50
Ts = (T +Ts+ Ts+T4)/4, oo —To+4T5—Te—Tsg= O.
Ts = (T5+ 50+ To +T5)/4, o —Ts —Ts +4T5 — Ty = 50
Tr= (Ta+Ts+0+50)/4, or —T4 + 4Ty — Tg = 50
To= (Ta+To+0+Th)/4, or —Ts—Tr+4Ts—To= 0

Ty

(T6+50+O+T8)/4, or —Te—Tg+4T9o = 0

29
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To express the equations on the right as AT = b we see that we can form the coefficient matrix
A and the righthand side b as follows:

>> A = 4*eye(9); ' The diagonal terms are all 4 and the non-zero

> A(1,[2 41) = -[1 1]; A(2,[1 35]) = -[111]; Y% off diagonals are -1
>> A(3,[26]) = -[1 1]; A(4,[1 5 7)) = -[1 1 1];

>> A(5,[268]) =-[111]; A(6,[359]) = -[11 1];

>> A(7,[4 8]) = -[1 1]; A(8,[579]) = -[111];

>> A(9,[6 8]) = -[1 1];
>> b=[ 150; 100; 150; 50; 0; 50; 50; 0; 50];
>> [A b] Y% Here is the augmented matrix for the system.

ans =
4 -1 o -1 0 0 0 0 0 150
-1 4 -1 o -1 0 0 0 0 100
o -1 4 0 0o -1 0 0 0 150
-1 0 0 4 -1 0o -1 0 0 50
0o -1 0 0 R 0o -1 0 0
0 o -1 0o -1 4 0 0 -1 50
0 0 0o -1 0 0 4 -1 0 50
0 0 0 o -1 o -1 4 -1 0
0 0 0 0 0o -1 o -1 4 50

Notice that the non-zero terms are (relatively) near the diagonal; specifically there is a diagonal
band about the main diagonal containing all non-zero entries.

b.
>> R = rref([A bl); % The initial 9x9 in rref([A b]) is I so
>> R(:,10)° % The solution is just the 10’th column
ans =

Columns 1 through 7
65.0794 65.8730 65.0794 44.4444 33.3333 44.4444 29.3651
Columns 8 through 9
23.0159 29.3651

ie. Ty = 65.0794,T; = 65.8730,T3 = 65.0794, Ty = 44.4444,T5 = 33.3333,Ts = 44.4444,T; =
29.3651, Ts = 23.0159, Ty = 29.3651.

>>
>> y = (A\b); y’
ans =
Columns 1 through 7
65.0794 65.8730 65.0794 44.4444 33.3333 44.4444 29.3651
Columns 8 through 9
23.0159 29.3651
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9. (a) First set A to be the matrix, and b to be the right hand side:

>»>A=[ t1-.2 -5 -.15; -.4 1-.1 -.3; -.26 -.5 1-.15; ]
A= .
0.8000 -0.5000 -0.1500
-0.4000 0.9000 -0.3000
-0.2500 -0.5000 0.8500
>> b = [10; 25; 20]
b =
10
25
20
>> A\b
ans =
110.3058
118.7429
125.8211

(b) (i) The value agz = .05 tells us that industry 2 needs .05 units of output from industry 3 in order
to manufacture one unit. The value asz = 0 tells us that industry 3 needs none of its own
output.

(i1) The augmented matrix will be:

> A =[1-.2 -.1 -.3 300000
-.15 1-.25 -.25 200000
-.1 ~-.05 1-0 200000]
A=
1.0e+05 *

0.0000 0.0000 0.0000 3.0000
0.0000 0.0000 0.0000 2.0000
0.0000 0.0000 0.0000 2.0000

MATLAB has printed only the most significant digits, .8 is very small compared to 300,000
so it is rounded off to 0. It does, however, keep the smaller numbers in memory:

>> A(:, 1:3)
ans =
0.8000 -0.1000 -0.3000
~-0.1500 0.7500 -0.2500
-0.1000 -0.0500 1.0000

Also, A is printed using “scientific notation”. The “1.0e+05 *” tells us that we must multi-
ply every number in A by 100,000.
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(iii)
>> R = rref(A) % This reduces A to row echelon form.
R =
1.0e+05 *
0.0000 0 0 5.3720
0 0.0000 0 4.6645
0 0 0.0000 2.7704
>> R(:,1:3) % This is the reduced echelon form of the coefficient part:
ans =
1 0 0
0 i 0
0 0 1
>> x = R(:,4) Y% The solution vector.
X =
1.0e+05 *
5.3720
4.6645
2.7704
In order to balance supply and démand, industry 1 should make 537,200 units, industry 2
should make 466,450 units, and industry 3 should make 277,040 units, to 5 significant digits.
(iv
>> format long
>> X
x =
1.0e+05 *

5.37197626654496

4.,66453674121406

2.77042446371520
>> format

10. (a) The equation for each intersection will be: (The negation of each is also a valid equation).

at [1] = —z3 +z5 = 200
at [2] —Z1 +To = 0
at [3] —zy +T3 —T4 = —100
at [4] z4 —z5 = —100
(b)
> A=[1 0-1 0 1 200
-1 1. 0 0 O 0
0-1 1-1 0 -100
0O 0 0 1-1 -1001];
>> rref(4)
ans =
1 0 -1 0 1 200
0 1 -1 0 1 200
0 0 0 1 -1 -100
0 0 0 0 0 0

We may choose z3 and x5 arbitrarily, then z; = z3—25+200, z3 = £3—25+200 and z4 = z5—100.
(c) If we set z5 = 0, then z4 = —100, i.e. the traffic from [3] to [4] would have to be reversed. The
smallest x5 can be chosen is 100, in order to keep all of the other numbers nonnegative.
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11. (a) As in the example, the equations to solve will be Ax = b, with:

[1"211; 3723 1; 4°2 4 1]

>> A

-

1 1
9 3 1
16 4 1
> b = [-1; 3; -2];
>> x = A\b

x =
-2.3333
11.3333
-10.0000

The parabola will be y = —2.3333z2 + 11.3333z — 10.

>> x
>>V
V =

[1; 3; 4]1;
vander(x)

1 1 1
9 3 1
16 4 1

V is the same matrix as A.
(b) This is similar to (a), except we now need a third degree polynomial to fit four points:

> A =[0"30"201; 1°31°211; 33323 1; 4°3 4°2 4 11

A=
0 0 1
1 1 1 1
27 9 3 1
64 16 4 1
>> b = [5; -2; 3; -2];
>> x = A\b
x:
-1.4167
8.8333
-14.4167
5.0000

The cubic polynomial will be y = —1.4167z3 + 8.8333z% — 14.4167z + 5.

>> x
>>V
V =

fo; 1; 3; 4];
vander(x)

1]

0
1
27
64 16

O = O
w W o
[ SN

V is the same matrix as A.
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(¢) For part (a):

>> x = [1; 3; 4];
>y = [-1; 3; =2]; o
>> V = vander(x);
>> c= V\y 2
c =
-2.3333 W
11.3333
-10.0000 or
>> s= min(x):.01:max(x);
>> yy = polyval(c,s); a
>> plot(x,y,’*’,s,yy) i .

1 1.5 2 25 3 35 4

For part (b):

>> x = [0; 1; 3; 4];
>y [5; -2; 3; -2]
>> V = vander(x);

>> ¢c= V\y

-1.4167

8.8333

-14.4167

5.0000
>> s= min(x):.01:max(x);
>> yy = polyval(c,s); % TTeE 1 15 2 25 8 a5 4

>> plot(x,y,’*’,s,yy)
(d) This will generate a 7th degree polynomial, passing through each of the seven points.

>> x = rand(7,1)

x -
0.0668
0.4175
0.6868
0.5890
0.9304
0.8462
0.5269

>> y = rand(7,1)

y —
0.0920
0.6539
0.4160
0.7012
0.9103
0.7622
0.2625



m Equations in n unknowns: Gauss-Jordan and Gaussian Elimination MATLAB 1.3 35

>> V = vander(x);
>> ¢= V\y
C -

1.0e+04 *

-0.9529

3.3259

-4.6043

3.1855

-1.1279

0.1808

-0.0079
>> s= min(x):.01:max(x);
>> yy = polyval(c,s);
>> plot(x,y,’*’,s,yy)

8

) R . . PR, e " P,
01 02 03 04 05 06 07 08 09

Notice that even though the y coordinates of the original points were all between 0 and 1, the result-
ing polynomial can oscillate dramatically.
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Section 1.4

Note: Any variables appearing in a solution can take arbitrary values.

2 110 1 -1/2 10
1. (3 4 0) (0 11/2 ' ) — (0 ] ) Solution: (0,0).
1-510 1-5]0 .
2. (-1 5 '0) — (0 0 '0) Solution: (5z3,z2).
1 1-1]0 1 1-110 10 1/6 |0 100]0
3.1243|0)J]—{0-6 5|0]—(01-5/6{0}]—{010/(0]. Solution: (0,0,0).
3 7-1]0 0 4 210 00 16/3 |0 001{o0
1 1-1]0 1 1-1]0 » 10-1/6 {0
4. | 24 30} —10-6 5j0]—{01-5/6{0]. Solution: (z3/6,5z3/6, z3).
-1 -7 610 0 -6 5|0 00 0f(o0
1 1 -110 1 1 -1]0 10-1/6 |0
512 -4 3|0)J—=(0-6 5|0)—]01-5/6|0]. Solution: (z3/6,5z3/6, z3).
-5 13 -10 |0 0 18 -15 |0 00 010

=]

!

1 2 -1/2 10 4/7 .
’8) (0 ?{4 {0 I —*( / . ) Solution: (—4z3/7,5z3/7,z3).

) 01 -5/7
0 1 -1/4 |0 10
0 019/4 0 01
0) (o ele) - (o

1-1 7-1 o (r-r 7o) (10 13/5-2/5 |0
23810 2 5-22 30 01 -22/5 3/5(0)

Solution: ((—13z3 + 2z4)/5, (2223 — 3z4)/5, z3, z4).

). Solution: (0, 0).

oo

=~
/N /\ /'\

1-2 1 110 1 -2 1110 10 2/3-2/3 10 100 4]0
9 3 0 2-210 - 0 6 -1-510 _ 01-1/6 -5/6 |0 - 010-21]0
10 4-1-110 0 4-1-140 00-1/3 7/3 10 001-71(0
5 0 3-110 0 10 -2 -6 |0 00-1/3 7/3 0 000 0f{0
Solution: (—4z4,2z4, Tz4,T4)
20 0710 1 0 0 -7/2 1|0 1 0 0 -7/2 {0
o [1r21ajo) (o2 1-as2(0]_ [o-2-1/2 154 |0
' 3 0-1510 0 0-1 31/2 10 0 0 -131/210
42 30(0 0 2 3 28/2 0 0 0 4 13/2 |0
100 -7/210 100010
- (8 0 _31/‘; NI R | Solution (0,0,0,0).
0 00 155/2 {0 0001{|0




11.

12.

13.

14.

15.

16.

Homogeneous Systems of Equations Section 1.4

2 10 1 -1/2 |0 10]0

3 510 0 13/2 |0 01]0 -

7 3lo]l = 1o 1/2 |o ~1oolol Solution: (0,0).

-2 310 0 210 00]0

1 -31{0 1-3]0

-2 6|0)—10 0|0]. Solution: (3z2,z>).

4 -12 |0 0 0|0

1'1-1]0 1 1-11{0 1 1-1]0 10 -4]0 100(0

4-1510) (05910} f0-1-3/10) (01 3|0} (010]/0

2 1-210 0 3410 0 3-410 00-13 |0 001]0

3 26 (0 0-1-3]0 0-5 9|0 00 2410 00010
Solution: (0,0, 0).

If a11 = a2; = 0, then z, is arbitrary and therefore infinitely many solutions and a;;as3 — aj2a2; = 0.
If either ay; or az; is non-zero, (say aj; # 0), then

0

0

a1 apz {0 1 aiz/aq;
—_
az a |0 0 (a11@22 — a12a21)/a1;

There will be an infinite number of solutions when a;; # 0 if and only if (a11a22 — a12a21/)/a;; = 0.
This is true if and only if ai11a22 — a12a21 = 0. Similarly az; # 0, get infinite solutions if and only if
ajiazz — ajzaz = 0.

2 -3 5|0 1 -3/2 5/2 |0 10 32/11]0
-1 7-110} —-(011/2 3/2|0} —- |01 3/11 |0 ]. In order to have a non-trivial
4 -11 k |0 0 -5 k-10 |0 0 0 k-95/11 |0

solution, we need k — 95/11 = 0. Therefore, k = 95/11.

Repeat the solution to Problem 43 in Section 1.3 to see that for a unique solution we need aq;a22a33—
a11a23a32 — G12a21a33 + A12a23@31 + G13021a32 — a13a22a31 # 0.
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CALCULATOR SOLUTIONS 1.4

Refer to the CALCULATOR SOLUTIONS 1.3 to review the conventions followed in presenting TI-85 solutions. If
the input for one of these homogeneous systems can be obtained by simple modifications to the (saved) input for a
previous problem, the solution will outline how to do that. Sometimes the appropriate augmented matrix can be
formed by extracting the coefficient submatrix (of a previous augmented matrix) and augmenting with a new right
hand side. consisting of all zeros. At other times an entire new row will be added to an existing (augmented) matrix
by first copying the previous matrix to a new variable and then editing the new matrix using the
<EDIT> menu entry, which allows changing dimensions and specifying specific elements of the matrix being edited.
Also recall that the TI-85 recognizes both rref and RREF as a name for the MATRX ops rref reduced row
echelon form function. (It is slightly easier to key in the all upper case version of most function names.)

17. This is the homogeneous system associated to Section 1.3, Problem 54. To solve it we form A1417 by

MATRX) <ops> <aug>A1354(1,1,2,3),[0,0) A1417. Then from the equiv-

alent system derived from RREF A1417:

[l 1 0 -1.66206896552 0 ]
[ 01 -.002298850575 0 1]

we find that the solutions are (1.66206896552x3, 2.29885057472E-3x3, X3) with x4 arbitrary.

18. This is the homogeneous system associated to Problem 55 in Section 1.3. We use
RREF (AUG (A1355(1,1,3,4),[0,0,01)) to produce the reduced echelon form:

[ -1.27469748219 0 ]}

[ 10
[ 01 .403399919808 0 ]
[ 00O 0 1]

from which we find the solutions are (1.27469748219x3, .403399919808x3, x3) with x5 arbitrary.

19. We input the augmented matrix A1419 by [[25,-16, 13, 33,-57,0} [-16, 3,1, 0, 12, 0] [0,-8, 0, 16,-26, 0]]
A1419, being careful to get the zero’s in the correct places to represent the missing variables. Then
from RREF A1419: '

[ -.330472103004 -.146995708155 0 ]

[ 100
[ 010 -2 3.25 01
[ 001 .712446351931 -.101931330472 0 ]]

we find both x4 and xs arbitrary and the solutions are ( .330472103004x4+.146995708155x5, 2x4-3.25x%s,
-.712446351931x4+.101931330472xs, x4, Xs).

20. The first three equations have the same coefficients as Section 53, Problem 57, so A1420 can be formed by
A1357 A1420, and using <EDIT>A1420 to edit this new augmented matrix.
First we change the number of rows to 4 and leave the number of columns at 6 by 4 [ENTER) (ENTER) and
then we use the arrow keys and <col#> to edit the bottom row to contain -1, 11, -9, 13, -20 and 0. Finally we
make the last (6’th) column all zeros. Now from RREF A1420:
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[[ 1 00 0 -.288096195186 0 1]

[ 0100 -1.00777740881 0 ]

[ 0010 -1.28332488596 0 ]

[ 00 01 -1.59634374399 0 ]]

we see the solutions are (.288096195186xs, 1.00777740881xs, 1.28332488596xs, 1.59634374399xs, x5) with
x5 arbitrary.
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MATLAB 1.4

1. (a) One example: (your answer will differ).

>> A = rand(3,4)

A=
0.0331 0.9554 0.8907 0.1598
0.5344 0.7483 0.6248 0.2128
0.4985 0.5546 0.8420 0.7147
(b)
>> rref(A)
ans =
1.0000 0 0 0.3685
0 1.0000 0 -1.1232
0 (o} 1.0000 1.3704
(c) The solution of this system has x4 arbitrary, £; = —.3685z4, 2 = 1.1232z4, and z3 = —1.3704,

since Ax = 0 is equilvalent to ans*x=0. The associated homogeneous equation has more un-
knowns than equations, which gives a non-pivot column. Since a variable can be chosen arbitrar-
ily, there are an infinite number of solutions, as predicted in Theorem 1.

2. Most matrices with more rows than columns will have only one solution to the homogeneous system.
However, it is not true that all of them do. The matrix in (ii), for example, does not.

(1)
> A=[1230; -145-1;02-62;1113; 020 1]
A=
1 2 3 0
-1 4 5 -1
0 2 -6 2
1 1 1 3
0 2 0 1
>> rref(4)
ans =
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1
0 0 0 0
There is a unique solution, x = 0, to Ax = 0.
(i)
> A=01-13;213;02-2; 44 4]
A=
1 -1 3
2 1 3
0 2 -2
4 4 4
>> rref(4)
ans =
1 0 2
0 1 -1
0 0 0
0 0 0
Since column 3 has no pivot, the solution will have x5 arbitrary, z; = —2z3, and z3 = 1z3. There

are an infinite number of solutions to the homogeneous equation.
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3. ”Balancing” will lead to a homogeneous system because any solution, x will lead to another solution
by scaling rx. In order to get a unique solution, we must require that x is made of positive integers
with no common divisor.

(a) The solution for the example will be:

>A=[10 -6 0

21 -6 -2
02-12 0 1;
>> R = rref(A)
R =
1.0000 0 0 -1.0000
0 1.0000 0 -1.0000
0 0 1.0000 -0.1667

>> format rat % Use this in version 4.0 in order to view
% output as rational numbers.
>> z = R(:,4)
zZ =
-1
-1
-1/6
>> format % This returns to the standard output format.

From this, we can see that if z4 is chosen to be 6, then 3 = 1, z; = 6 and £, = 6. With this
choice, there will be no common divisors, and all of the variables are positive integers.

(b) First we set up the equations, £, and z3 will correspond to the compounds on the left and z3
through z¢ for those on the right. Once we subtract the right from the left, all of the coefficients
from the right will be negative:

>> format rat % as above, use rational numbers in the outiput.

>A=[ 1 0 -0 -0 -3 0 % Those with Pb.
32 0 -0 -0 -0 -1 % Those with N.
0 1 -2 -0 -0 -0 % Those with Cr.
0 2 -0 -1 -0 -0 % Those with Mn.
04%2 -3 -2 -4 =-1] Y% Those with 0.
A=
1 0 0 0 -3 0
6 0 0 0 0 -1
0 1 -2 0 0 0
0 2 0 -1 0 0
0 8 -3 -2 -4 -1
>> rref(A)
ans =
1 0 0 0 0 -1/6
0 1 0 0 0 -22/45
0 0 1 0 ] -11/45
0 0 0 1 0 -44/45
0 0 0 0 1 -1/18

>> format % As above, it is a good idea to return to the default format.

From the reduced echelon form of A, we can see that in order to make all of the variables inte-
gers, ¢ must be chosen to be the least common multiple of 45, 6, and 18, which is 90. With this
we get the answer: x; = 15, x5 = 44, 3 = 22, ©4 = 88, 5 = 5, ©¢ = 90.
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Section 1.5

-0 =00 00
@@ -0
(@ 00+ -0
TERENERERC REREE

11. (3,-1,4,2) + (-2,3,1,5) = (1,2,5,7) 12. (6,0,—1,4) — (3,~1,4,2) = (3,1, -5,2)
13. 4(—2,3,1,5) = (=8, 12,4, 20) 14. (-12,0,2,-8) 15. (6,-2,8,4)—(—2,3,1,5) = (8,-5,7,—1)

16. (24,0, —4,16) — (21,—7,28,14) = (3,7, -32,2)
17. (7,2,4,11) 18. (-2, 1,10,5) 19. (~11,9,18,18)

20. (3a+68—2y,—a+3y,4a— B+ 7,20+ 48+ 57y)

13 3 9
.3 25| = 616
-12 -3 6
13 -20 -13
22. 25|+ 14 ] = 39
-12 -75 —87
13 -11 2 2
23. 25— 46| = -2-1
-12 =73 6 -1
-11 13 -2 2 515 -7 -13
24. 2 46| -5 25 | = 812 -1 1025 | = -2 -13
-73 -12 -14 6 -5 10 -9 —4
-20 00
25. 0 14] =100
=75 00

2

p—
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(=21

27.

3

28.

oo

2

o

30.

31

33.

34.

35.

(2}

(
|

X

.A+23—-3C+E’=0saysE=3C—2B—A=(

1-1 2 0 2
3 4 5]-213 0
0 1-1 7 —6
3(

|

{

-12

-11
46
~73

N

1

25

3)+
)_

13 -20
2543 14 ] =
-12 =75
0 -11
41+ 46
5 73
3 -20
51— 14
2 -75
-11
+4 46
-73

13
25
-12

~-11
46
-73

1
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0

-1
4
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3 4 5
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1

2
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0 21
3 05
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)
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13
25
-12

-7 -21 —6 0
—-14 =35 | + 312
714 —-2115
-2 4
= 715
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0-2
=|1-3
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= 410 ) —
-2 4

4
=\ 17
-9
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01
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0 02
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)|

-6 0
312
—2115

-20
14
-75

0 0
8 5
—6 —3

4 2
010

0
6
14 -12 0

)|

-11 -23

13 -21
-14 1

-4 4
+ 16 24
—28 12

2 6
+ 410
-2 4

3-3 4
6 11 15
0 657

|

)

1-5 0
= -3 4-5
-14 13 -1

43
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1-1 2 0 21 0 02
36. 2 3 4 5 3 05}+2(3 10
1-1 7-60 0-214
2-2 4 0 21 0 04 2417
6 810]—-13 05]+[6 20]= 9 105
0 2-2 7-60 0-44 -7 42
0 02 1-1 2 0 21 -1-1 -1
37. 13 10}—-(3 4 5]-13 05)]=1}|-3-3-10
0-214 0 1-1 7-60 -7 3 5
0 02 0 21 1-1 2
38.4(3 10]—-2|3 05}1+3|3 4 5
0-24 7-60 0 1-1
0 0 8 0 4 2 3-3 6 3 -712
=[12 4 0] - 6 010} +1]9 12 15]) = 15 16 5
0-816 14-12 0 0 3-3 -14 713

-1-1 -5
39. D=-A-B-C=|-9-5-10

-7 7 =3

40. A+ 2B —3C —4E = O says 4E = 3C — 2B + 8A. Divideby4togetE‘:%[36’—-2B+8A]

0 0 6 0 4 2 8 —8 16
:i— 9 3 0]—-]| 6 010)+]24 3240
0—6 12 14-12 0 0 8-8

2 -3 5
= ( 27/4 35/4 15/2)
-7/2 7/2 1

@i a1z *-- Qin 0-a11 0-a12--- 0-a1n 0---0
aml Gm2 * " Gmn O'Gmlo'amZ"'O'amn 0---0
0---0 ajp a2 - Gin 0+ai; 04+ayz - O+a1n
A R = s ;
0---0 am1 @Gm2 **° Gmn 0+ami 0+ama - 0+ amn
ai; a2 - Qin
= =4
Am1 Am2 *°° Amn
aj; aiz --- ain l-apy 1-aip--- l-ain aj; ayp - @in
il = s =1 =4
Aml CGm2 " Amn 1'amll'amZ"'l'amn Am1 Qm2 " Amn
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. ai; aiz - - Qin bll b12 bln €11 €12 -+ Cin
aAm1 Gm2 ‘" Gmn bmi bma - bmn Cml Cm2 " Cmn
(@11 +b11)+ecin (arz+b12) +c12 -+ (ain +b1n) +c1n

(aml‘ + bml) + ¢m1 (amZ + me) +Cm2 - (amn + bmn) + cmn

ajy + (b1 +c11) a1z + (biz+ec12) -+ ain+ (bin + c1n)

am1 + (bml + cml) am2 + (bm2 + cm2) “ Gmn + (bmn + cmn)
A+(B+C)

43. If A = (a;;) and B = (b;;), then a(A+ B) = a((ai;) + (bij)) = a(aij + bij) = (a(aij + bij)).
aA+ aB = afa;;) + a(bi;) = (cai;) + (absj) = (aai; + abi;) = (a(aij + bij)), and
Therefore a(A + B) = aA + aB. Similarly,

(o +P)A = (a+ B)(aij) = (o + B)aij) = (aaij + Pasj).
ad + fA = a(aij) + Blai;) = (aaij) + (Baij) = (aai;) + Paij)
Therefore (a + 8)A = aA + BA.

0110 01010

1010 10110

44, 45. 101001
1101

0010 11000

00100

46. The entries of d + e represent the demand for all four raw materials if each factory is to produce 1
unit. 2d gives the total raw material needs for factory 1 to produce 2 units.

45
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MATLAB 1.5

1. (a)

> A=[1 2-2 0 1
2 4-1 0 -4
-3 -6 12 2 -12

1 2-2-4 -5]

A=
1 2 ~2 0 1
2 4 -1 0 -4
-3 -6 12 2 =12
i 2 -2 -4 -5

>> ¥ Choose A(1,1) as the first pivot.

> ¢ = —-A(2,1)/A(1,1); A(2,:) = A(2,:) + c*A(1,:);
>> ¢ = -A(3,1)/4(1,1); A(3,:) = A(3,:) + c*A(1,:);
> ¢ = -A(4,1)/0(1,1); A(4,:) = A(4,:) + c*A(1,:)
A=

1 2 -2 0 1

0 0 3 (o] -6

0 0 6 2 -9

0 0 0 -4 -6

>> % Now let A(2,3) be the pivot.
>> ¢ = -4(3,3)/4(2,3); A(3,:) = A(3,:) + c*A(2,:)

A=
i 2 -2 0 1
0 0 3 0 -6
0 0 0 2 3
0 0 0 -4 -6

>> % Now let A(3,4) be the pivot.
> ¢ = -A(4,4)/4(3,4); A(4,:) = A(4,:) + c*A(3,:)

A =
1 2 -2 0 1
0 0 3 0 -6
0 0 0 2 3
0 0 0 0 0

This matrix is now in echelon form.
(b) Recall that rand generates a random matrix, so your answer will be different.

>> A = rand(4,5);

>> A(:,3) = 2%A(:,1) + 4%A(:,2)

A =
0.5269 0.7012 3.8586 0.7564 0.9826
0.0920 0.9103 3.82562 0.9910 0.7227
0.6539 0.7622 4.3566 0.3653 0.7534
0.4160 0.2625 1.8818 0.2470 0.6515

>> % Choose A(1,1) as the first pivot.

>> ¢ = -A(2,1)/8(1,1); A(2,:) = A(2,:) + c*A(1,:);
>> ¢ = -A(3,1)/A(1,1); A(3,:) = A(3,:) + c*A(1,:);
>> ¢ = -A(4,1)/0(1,1); A(4,:) = A(4,:) + c*A(1,:)



>> % Now let A(2,2) be

0.5
0.0

269 0.7012
000 0.7879
0 -0.1080
0 -0.2011

>> ¢ = -A(3,2)/A(2,2);
-A(4,2)/4(2,2);

269 0.7012
000 0.7879

0
0

-A(4,4)/A(3,4);

269 0.7012
000 0.7879

0

>> c =
A=
0.5
0.0
0.0000
0.0000
>> % Now choose A(3,4)
>> ¢ =
A =
0.5
0.0
0.0000
0.0000

0

3.8586
3.1518

-0.4319
-1.1645

the pivot.

A(3,:)
A(4,:)

3.8586
3.1618
0.0000

0

Vectors and Matrices

0.7564 0.9826
0.8590 0.5512
-0.5734 -0.4660
-0.3501 -0.1242

A(3,:) + c*A(2,:);
A(4,:) + c*A(2,:)

0.7564 0.9826
0.8590 0.5512
-0.45566 -0.3905
-0.0327 0.0795

as the pivot.
A(4,:) = A(4,:) + c*A(3,:)

3.8586
3.1518
0.0000
0.0000

0.7564 0.9826

0.8590 0.5512

-0.4556 -0.3905
0 0.1075

MATLAB 1.5

It is worth noticing that we have introduced some small round-off error. For example:

>> A(2,1)

ans

1.38

78e~-17

This is not exactly zero. However, up to the 14 significant digits that MATLAB can print out,
the matrix we have above is in row echelon form.

2. (a)

>>
>>
>>
>>
>>
>>
a

a =

zeros(5);
a(1,[2 4]) = [1 1];
a(2,[1 34]) = [111];

a(3,[2 58]) = [1 1];
a(4,[1 2]) = [1 1];
a(5,3) = 1
0 1 0 1
1 0 1 1
(0] i 0 0
1 1 0 0
0 0 1 0

OO+ OO

(b) A will have 5 rows, since there are 5 nodes, and 8 columns, since there are 8 edges.

>>
>>
>>
>>
>>
>>
>>
>>
>>

A=

A(l1
A(L2
A([4
A(L1
A([3
A([s
A([3
A([s

zeros(5,8)

2], 1)
4], 2)
1], 3)

3], 4) =
5], 5) =
11, 6) =
41, 7) =

4], 8)

[-1;
[-1;
[-1;
[-1;
[-1;
[-1;
[-1;
[-1;

1]
1]
1]
1]
1]
1]
1]
1]

¥

?

.
’

47
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-1 0 1 -1 0 1 ] 0
1 -1 0 0 0 0 0 0
0 (o] 0 1 -1 0 -1 0
0 1 -1 0 0 0 1 1
0 0 0 0 1 -1 0 -1
3. (a)
>A=0[123;456]; %%2x3
> B=[12;34;58¢6]; %3 x2
> A + B

??? Error using ==> +
Matrix dimensions must agree.

(b) In general, if A and B are the same size,
sA+sB =s(A+ B).
We can check this on random matrices as follows:

>> A = rand(3)

A=
0.9866 0.0907 0.5007
0.4940 0.9478 0.3841
0.2661 0.0737 0.2771

>> B = rand(3)

B =
0.9138 0.9410 0.7702
0.5297 0.0501 0.8278
0.4644 0.7615 0.1254

>> s = rand(
s =

1)

0.0159
>> C = s*A + s*B
C =
0.0302 0.0164 0.0202
0.0162 0.0158 0.0192
0.0116 0.0133 0.0064
>> D = s* (A+B)
D =
0.0302 0.0164 0.0202
0.0162 0.0158 0.0192
0.0116 0.0133 0.0064
> C-D
ans =
1.0e-17 *
0.3469 0 0
0 0 0
0 0 0

We see that C — D is not exactly zero, but the difference between C and D can be accounted for
by round off error in the computer. This process can be repeated with any matrices A and B,
and the same results will occur.
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Section 1.6
1. 2:3+3:-0+4(-5)-4=-14 2.1-342:(-7)+(-1):4+40:(-2) = -
3.5:3+7-(-2)=1 4. 8:74+3-(-4)+1-3=47 5. ac+ bd
6. zy+yz + 2z 7. (-1)2 +(-3)2 +4%2 +52 =51
8. Since a? >0 thena-a=a?+a3+---4+a2 >0
9. If a=0, then a-a = 0. Conversely, if a # 0, then a? > 0 for some i, and hence a-a > 0. Thus, a = 0
if and only if a-a = 0.
4
10. 2:04+(—4)-(—9) +8-(—21) = —132 11.a- | -4 ) =4+8-8=4
-2
1 0 12 5
12. ¢- 1] =4-1+55=258 13. -6 ] - -3 ] -1 -10 =0-424+70=28
11 -14 15 20
3 0 4
14. . -9]-1-8 =1241437=50
-21 16
15. 8+0 2+18 8 20 16 -15-218-6\ _ [ -1712
—44+0-1+12 -4 11 ’ -5+46+12) 7\ -118
17, -1-20-3 -3 -3 18 —-154+6 10+24\ [ —-934
-14+20+3 1 3 ) 3+3-2+12/) 6 10
19. -12+254+04+30+1-4+20+2 13 3518
0+20+00+24+2 04+164+4 20 26 20
2. 7T+0-—-8 42+4+12 —158
24+0-1012-12+15 -8 15
7+12 1-18 4430 19 —17 34
21. 0+8 0—-12 0+20 ]| = 8 —12 20 22. not defined
—144+6-2-9-8+15 -8 -11 7
24+4+4+12-34+04+18 5+2446 18 15 35
23. | -4+3+10 6+0+15-10+18+5 92113

2404+8-3+4+0+12 5+0+4 10 9 9
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24.

25.

26.

29.

30.

31.

32.

33.

24+64+58-94+012-154+20 13 -1 17
1+40+6440+0 64+0+24 ) = 7 430

2-64+1849+0 1241544 -3 1731

(3+8+0-4 ~6+164+0+6)=(716)

3+8+0-4\ [ 7 o7 Z'gé
—-6+164+0+6/ ~ \ 16 A5 19

321
28. |4 06
5 19

a'14+b-0+¢-0a-0+b:14+¢c-0a-0+b-0+4c¢c-1 abe
d-1+e-0+f-0d:0+e-1+f:0d:0+e-0+f-1]=]def
9:1+h-0+7-0 g-04+h-14+4-0 g-04+h-0+1¢-1 ghi
2a+b3a+20\ _ (10 . L
We want ( 9% +d 3c+2 d) = ( 0 1). This gives two systems of equations:

2a+b=1 2+d=0 _ 2 1|1\ _ (1 1/2]1/2
3a+2b=03c+2d=1" Sclvingfor aand b e find (3 2 lo) (o 1/2 i-:s/z)

— ((1) (1) '_g) Hence, a = 2 and b = —3. Similarly, one can show ¢ = —1 and d = 2.

We want (a11b11 +a1zbiz a11byz + a12b22) = <1 0). As in problem 30, this gives two systems of

az1b11 + azzby azibiz + azaban 01
equations:
ayrbyr + aizby =1 ajibio +ajabar =0
az1by1y + azzba =0 az bz + azabay =1

Since ajjasz—ajzaz; # 0, then either ai; or aj; is nonzero. Without loss of generality, we may assume
@11 Q12

1) _ (1 aiz/as; 1/ayn
az az |0 0 azz —azaia/ay |—az/air )’
Solving for by; gives ba; = —az1/(a11622 — azia;z). Use back substitution to find b;; =

aza/(a11a22 — ap1a12). Similarly, solving the second set of equations for by, bag, gives
bi2 = —ai2/(a11a22 — aza12), and baa = a11/(a11a22 — a21442).

111
926 44 12 =70 26 44
aw = (118) - (841) - wwe- (3 510) 0= (233)

aj1 # 0. Solving for b;; and bs; we obtain (

(a) There are 3 people in group 1, 4 in group 2, and 5 in group 3.

21100
(b) AB=]11010
10201



34.

35.
36.
37.
.38.
39.

40.

41.

42.

43.

44.

Vector and Matrix Products Section 1.6

(a) There are 2 people in group 1, 5 in group 2, and 7 in group 3.

2101213
(®) AB—<0202101)

‘b=2-3+(-3)-2=0 orthogonal

o

‘b=2-(-3)+(-3):2=-12#0  not orthogonal.

o

ab=1-2+4-34+(-7):2=0  orthogonal.
a-b=1:-04+0-1+1-040-1=0 orthogonal.
a-b=a-0+0:-d+b:0+0:e+¢-0=0 orthogonal.

We want (1,-2,3,5)(—4,,6,—1)= —4 — 2a + 18 — 5 = 0. Hence, o = 9/2.

1 4
We want —(; . _22 =4—5a—4f+21 =0. Let 3 be arbitrary. Then a =5 — %ﬂ.
3 7

(i)a-0=a;-0+a2:0+---4+a,-0=0 (ii) in text
(iii) a-(b+c)=a-(bs+c1,ba+ca, -, bn+cn)
=ai(by +c1) +az(ba +c2) + -+ an(bp + cr)
=arby +azbs + -+ apby + a1c1 +azea + - -+ ancy
=a-b+a-c
(iv) (ca):b = (aa1,aaz,---,aa,)-b
= aa by + aazby + - - + aazb,

= afarby + azbz + - -+ azby,)

=afa-b)
1
(a) (2,3,5,1) (b) (1); (¢) total hours =2+45+4+25+2=11
2
0.055
1.80
(a) (1000,20,100,5000,50)  (b) 0.20 (c) $136.00
0.001

0.40
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» 1
80,000 45, 000 40, 000 255,000
45. (a) ( 50 20 10) (b) (3) (c) ( 120)

1
4 220
46. Express the sales of each item in each month as the 4 x 3 matrix A = g ;lg . Express the unit
8 2.5 20
3515 5725 10.4
profit and unit taxes as the 3 x 2 matrix B = | 2.75 2 |. Then AB = 43'75 20'7 shows the
1506 64.875 29
total profits and taxes in each of the four months.
1 218
4—-4 -2-6 0 -8
47. ( ) = ( > 48. | 5-123
8+ 24 -4+ 36 32 32 8 332
-12 7 6 11 38
3 _ 42 —
49. 4 (9 22) A% =44 ‘( 34) (9 22)‘(57 106)
0010 0001
0001 3_ 10000 4 45 _
50- 4 (0000 A=1g000| A =4=0
0000 0000
00100 00010 00001
00010 00001 00000
51. A2=100001 A3=100000 A*=[00000 A5 =0
00000 00000 00000
00000 00000 00000
52. Let a;; be an element of A. Let B be an n x n matrix with b;; = 1 and 0’s everywhere else. Let

AB = C. C = 0 implies ¢;; = a;; = 0. Since a;; was arbitrary, then A is the zero matrix.

14119
90 %0 45

53. PQ = -1—1—213 —172—10 g . Each component is > 0 and the sum of the elements in each row is 1.
1 1 3
5 5 5

54. Clearly, the elements of P? are positive. If P is n x n, let v be a column n-vector with 1 as its ele-
ments. Note that if A is an n X n matrix, then the sum of the elements in each row of A is 1 if and
only if Av = v. We have P?v = P(Pv) = Pv=v. Hence, P? is a probability matrix.

55. Since every entry of P and of () is positive, the entries of PQ are all positive. If p and Q are n x n
matrices, let v be the column n-vector with every element 1; note that if A is an n x n matrix, the
sum of its entries along any row is 1 if and only if Av = v. Since (PQ)v = P(Qv) = Pv = v, we see
that P(Q is a probability matrix.
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ABCD = AB(CD) = A(B(CD)) = A(BC)D = (AB)CD = ((AB)C)D = (AB)(CD)

0011

2o 2010 Si=1+31+1)=28=1+1+32+1)=35

CH0100) Sy=14+1(1)=15 Si=14+1+3i(1+1)=3
1100

(a8) S >8> 81 > 83 (b) The score is the number of games won by player i plus half the
number of games won by players who player i beat.

n
OA = 0. The ij”‘ component of OA, ¢;;, can be written ¢;; = Zo;kakj. Since each element of O is
k=1
0, then ¢;; = 0. Hence, O, is the m x p zero matrix.

19
4535\ _ (2415 21 20
AP+ 0y = 4. ( ) ~(58) —amrac (%1) 4 (2 2)

10 1
(3‘1’ ! z) NI SIEHEEHIE
UL an(Gg)ren(R?)

_ ((:i 0)+(52%)

(212) + (16 38)

6 36
= | -7 -2
18 50

14121 10

-~ “~ N ——

1
§)(3|7|1| 5)=
2
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100 0 e {0 0
63 [ 01|00 gh|0 0
"l00[a b 001 0
00|c d 000 1
10Y (ef), (00) (00 10 (00Y), (00 (10
01/ \gh 00/\00 01/\oo 00/\01
00\ [ef (e (00 00) (00Y, (ab) (10
00/ \gh cd/\00 00/1\00 cd/\o1
-11 4 231 145
12( 04—3)+(526>13 563
64. =
of-11 4 -124), -124
04-3)T\ 21375 213
65 ag—(1° 10\ _(I?+0DI-04+0-1\ _ 2 0
‘ “\Cc1/\D1/) \CI+ID C-O0+I*) ~\C+D1I?
pa— (10 IO\ _(IP4+0CI-0+0-1
“\p1/\c1) " \pr+1ic D-o+1?
I? 0 2 0
_(D+CI2)_(C+D12)—AB'
3 3 3
66. > (i+ 2+ 3i +4i) = 10 i =60 67. ) 99k? = 1,386
i=1 =1 k=1

4
68. 204214924923 494 = Z2’°
k=0
69. (=3)° + (=3)! + (=3)2 + (=33 + (=-3)* +(-3)° = Z(_3)f

70. > k/(k+1) 71 ) ath
k=2 i=1

3 3 3
72. ) (i +2i+ 3i+ 4i) = 10) i =60 73. ) 99k* = 1,386

i=1 i=1 k=1
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4
74. 20421422428 420 =) o
k=0

75. (=3)° + (=3)' + (=3)2 + (=3) + (=3)* +(=3)° = Z(—3)‘

n n 9 4
76. Y k/(k+1) 7.y il 78. ) 2% 79. > (-)*a as Y P =8+27+
k=2 =1 1=0

j=2
64 = 99.

80. (2-1—1)(2-14+1)+---+(2-8—1)(2-84+1) = > (2k — 1)(2k + 1)
k=1

7 7
81. 2%(2-2) +3%(2-3) + -+ T2(2-7) = >_k*(2k) =) 2k°
k=2 k=2

3 7 3 2 3 2
89. E(alj + agj) = Zzaij 83. Z(alj + ag;j +azj) = Z Zdij
j=1

i=1j=1 j=1 i=1j=1

4 4 4 5
84. 2(‘12]' + az; + a4j) = Z Eaij 85. Za.’iibﬂ
ji=1 i=1

i=2 j=1

4 3 4
86. E (a21b1j¢55 + azzbajcjs + azsbsjcjs) = E E azibijcjs

N
87. Z(ak+bk)=aM+bM+aM+1+bM+1+--~+0N+bN

k=M
=apm+am4r+ - +an+by by + -+ by
N N
- S a=Yon
k=M k=M
N N 14) N N (13) N N
88. ) (ar—bi)= Y (ae+(-Db) = Y ar+ Y (~Dbe = > ar— Y b
k=M k=M k=M k=M k=M k=M
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N

89. Zak:aM+aM+1+"‘+aN
k=M

=am +am41+- -+ ap-1+amtanp+-t+an
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CALCULATOR SOLUTIONS 1.6

In this section many of the problems have two input matrices, and we append the problem number to the matrix
name; for instance we use Al6nn and B16na to refer to the left and right factors in the products in problem 7n,
nn=90,91,92. We assume that the matrices have been entered and we will only show how to obtain the solutions
from these input matrices.

[[ -12.0704 -26.8412 ]

90. A1690 B1690 (ENTER) gives the product: [ 44.4207 -45.0695 ]
[ 91.7485 4.2242 1]

[ 341592 38621 }
[ 50408 44115 ]
[ 62661 71731 ]
[ 59190 55046 ]

(
91. Al1691 B1691 {ENTER|] gives the product:

[[ -.6557 -3.3655 ]

92. A1692 B1692 (ENTER] gives the product: [ .6907 3.4072 ]
[ -1.4255 5.5459 1]

93. (a) To see P1693 and Q1693 are probability matrices compute their row sums by computing their products
with
the column of all ones: [[1]1[1][1]{11] ONES
(1] ([1]
1 1
P1693 ONES : {1; and Q1693 ONES : Eli
[11] [11]

(b)
[[ .31118 .18444 .14174 .36264 ]

[ .32625 .27585 .08454 .31336 ]
Th P1693 | 1693 |ENTER] :
e product © [ .17955 .22651 .19619 .39775 ]
[ .30047 .15251 .33558 .21144 ]]
can be saved as PQ1693 via 2nd] (ANS] {(STO®) PQ1693. Then you see the product is a probability matrix
([1]

1
by showing its row sums are all 1 by PQ1693 ONES which yields: Eli
(1]]
94. Entering A1694 n,n=2,5,10, 50, 100 gives:

A1694° A1694° A1694%° A1694°° 71694100

is is is is is

[[1 9] [[1 93] {[1 3069] ({1 3.378El5] [[1 3.803Ee30]
[0 4]] [0 32]] [0 1024]] {0 1.126E15]] [0 1.268E30]]
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95. From the A2, A%, A!° results in Problem 94, where the diagonal components are {12, 22}, {1°, 2°} and

{1%°, 219}, it appears that the diagonal components of A” are just a”, b", c".
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MATLAB 1.6

>> A = rand(3,4)

A =
0.6885 0.7362 0.8886 0.3510
0.8682 0.7254 0.2332 0.5133
0.6295 0.9995 0.3063 0.5911

>> B = rand(4,2)

B =
0.8460 0.4154
0.4121 0.5373
0.8415 0.4679
0.2693 0.2872
>> AxB
ans =
1.7281 1.1982
1.3679 1.0070
1.3614 1.1116
>> B*A

??? Error using ==> *
Inner matrix dimensions must agree.

The product of a 3 x 4 with a 4 x 2 will be a 3 x 2 matrix, so AB is a 3 x 2 matrix. However, the
product of a 4 x 2 with a 3 x 4 is not defined since 2, the number of columns of left factor, is not 3,
the number of rows of the right factor.

2.
>> A = round(10*(2*rand(3)-1))
A =
-9 -10 -2
1 -2 4
3 -9 2

B =
9 -8 4
7 3 8
1 -2 5
>> A*B
ans =
-153 46 -126
-1 -22 8
-34 ~55 -50
>> B*A
ans =

=77 -110 -42
-36 -148 14
4 =51 0

The probability that for two random matrices, AB = BA is very small.
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3. (a)

>> A

i
™

~N~NON

0 0 B ©
|
[y
N

B O

1;

> b = [ 34; 24; 15; 33 ];
>> z [ -2; 3; 1; 0];
>> x [ -5; 10; 2; 21;
>> A*x % This will be b.

>> A*z % This will be zero.

© O O O

(b) For any scalar s,
A(x + sz) = Ax + sAz = Ax + 0 = Ax.

This can be tested by computing the following:

>>s = rand(1)
s:
0.7529

>> A * (x+s*z) Y This will be b
ans =

34.0000

24.0000

15.0000

33.0000

>>Y% Generate Random matrices:
>> A = round( 10*( 2*rand(2,4)-1) )

=3 3 0 4
=5 4 5 9

>> B = round( 10*( 2*rand(4,5)-1) )

B =
-1 0 10 1 -5
9 3 -7 0 3
-4 -2 3 7 1
-1 2 -3 -10 8
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>> B(:,2) = B(:,3)

B =

-1 10 10 1 -5
9 -7 -7 0 3

-4 3 3 7 1
-1 -3 -3 -10 8

>> % part (b):

>> A*B

ans =

26 -63 -63 -43 56
12 -90 -90 -60 114

Since columns 2 and 3 were the same in B, they will also be the same in AB.

(c) The above can be repeated several times.

(d) Proof: Assume that the columns m and n are the same in B. This implies that b;,, = b;, for
any i. If C = AB, what we wish to show is that ¢j,m = ¢;j» for any j, i.e., that the m and nth
columns of C are the same. To do this, we will write ¢, using Z notation. Assume that the
width of A is p, then:

P P

Cim = Zajibim = Zajibin = Cjn.

i=1

i=1

Which concludes the proof.

>> A = round( 10*( 2*rand(5,6) - 1) )

A=
-5 -1 4 4 0 5
9 6 -1 -4 -8 -1
-5 -10 2 5 -7 -10
7 -7 5 -7 8 2
4 4 10 -10 6 0

>> x = round( 10*( 2*rand(6,1) - 1) )

>> A*xx - ( x(1)#+A(:,1) + x(2)*A(:,2) + x(3)#A(:,3) + ...
x(4)*A(:,4) + x(5)*A(:,5) + x(6)*A(:,6) )

© OO OO

This is essentially the same as expression (10) in the text. The expression inside the parentheses is
the definition of matrix multiplication.
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6. (a) We can write AB = BA as AB — BA = 0. Then, with this choice of A and B,

0=AB - BA

_ [ ax1+ brs azg + bzy _(az1+cz2 bz + dz,
T \cxy+dzrz czy +dzy azrz + cxq bz + dxy

_ —czy + bzs —bzy + (a — d)zy + by
czy1 + (d — a)zz — cz4 cxy — bzs

If we use each of the 4 entries in this matrix as one equation in our system, we will get a 4 x 4
system with coefficient matrix R and variables x.

(b) ()
> a=1; b=-1; ¢c =5; d = -4;
>R=[0 -c b 0
-b a—-d 0 b
c 0 d-a -c
c -b 0]
R =
0 -5 -1 0
1 5 0 -1
5 0 -5 -5
(o} 5 1 0
>> rref(R)
ans =
1.0000 (o} -1.0000 -1.0000
0 1.0000 0.2000 0
0 0o 0 0
0 0 0 0
1
Soz; = x3+ 14,22 = %:c;; or B = ($3+£:: 52) = 1?3(} 1/3) + x4 ((1) (1)) Notice

that the matrices z4 ((1) (1)) = x4] commute with all matrices, and so there will always be

infinitely many solutions for any A.

(i)
>> format rat % Use rat(rref(R), ’s’) in Matlab 3.5
>> rref(R)
ans =
1 0 -1 -1
0 1 1/8 0
0 0 0 0
0 0 0 0
If we choose z3 = 5, and z4 = 1 we will get £; = 6, and 2 = —1. You may choose any other

integers, as long as z3 is divisible by 5.
(iii) The matrix B will be

> B = [6 -1; 5 1]
B =
6 -1
5 1
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>> A = [a b; ¢ d]

A=
1 -1
-4
>> A*B - B*A
ans =
0 0
(v} 0

Since AB — BA is zero, we have verified that AB = BA.
(iv) This can be repeated for any other choice of z3 and z4.
(c) We can repeat the above, using the new matrix 4:

> a=1; b=2; ¢c=3;d-=4;
>R=1[ 0 -c b 0
-b a-d 0 b
c 0 d-a -c
0 c -b o]
R =
0 -3 2 0
-2 -3 0 2
3 0 3 -3
0 3 -2 0

>> format rat % This gives rational numbers in the output, for Matlab 4.0.
>> rref(R) Y% Use rat(rref(R), 1’1) in Matlab 3.5.

ans =
1 0 1 -1
(] 1 -2/3 0
0 0 0 0
(] 0 0 0
. -12 10 .
As above, we may choose z3 and z4 arbitrarily and B = z3 1 ?) + x4 o1l (Again w41 are
possible B’s.) If we choose £3 = 3, and z4 = 1 we will get £, = —2, and =3 = 2. The matrix B
will be
>> B = [-2 2; 3 1]
B =
-2
3 1

>> A = [a b; ¢ d]

A=
1 2
3 4
>> A*B - Bx*A
ans =
0] 0
0 0

Since AB — BA is zero, we have verified that AB = BA. (d) The above may be repeated using
any matrix for A. To avoid round off error, you should use an integer matrix.
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7.
>> A = round( 10*( 2*rand(2,2) -1) )
A=
-6 4
-9 4
>> B = round( 10*( 2*rand(2,2) -1) )
B =
9 0
-2 7
>> C = (A+B)"2
C =
-35 - 56
-154 77
>> D = A2 + 2%A+B + B~2
D =
-43 48
-192 85
>> C-D
ans =
8 8
38 -8
In general, it is not true that C = D. However, they will be equal when we use A and B from prob-
lem 6:
>> A = [1 -1; 5 -4];
> B = [6 -1; 5 1];
>> C = (A+B)"2
C =
29 -8
40 -11
>> D = A2 + 2*A*B + B"2
D =
29 -8
40 -11
>> C-D
ans =
0 0
0 0
When this is repeated with the matrices from 6(c), C will again be the same as D. In fact the state-
ment

(A+B)>=A*+24B+ B?

if and only if
AB = BA.

Proof: We may expand (A + B)? as follows:
(A+B)’=(A+B)(A+ B)
= A(A+ B)+ B(A + B)
=AA+ AB+ BA+ BB
= A+ AB+ BA+ B

If we subtract this from A2 + 2AB + B2, we get AB — BA, which is zero whenever AB = BA. Thus
we may say that (A + B)? is A2 + 2AB + B? exactly when AB is BA.



8. (a)

(b)

Vector and Matrix Products

>> A = round( 10*(2*rand(6,5)-1))

4 3 -9 -3 -9
2 -2 5 -5 3
9 4 -3 10 8
7 8 3 4 -5
1 5 5 5 -1
-8 -5 10 3 5

> E=[10000 0]

> E=[001000]

9 4 -3 10 8

> E=[2000 0 0];
>> E*A
ans =
8 6 -18 -6 -18

>E=[0020001];
>> ExA
ans =
18 8 -6 20 16

>E=[1010001];
>> E*A
ans =
13 7 -12 7 -1

(i1) Here E'A is the sum of the first and third rows.

>E=[2010001;
>> E*xA
ans =
17 10 -21 4 -10

MATLAB 1.6

In the first case, EA was the first row of A, in the second case, EA was the third row of A. In
general if E is all zeros except a 1 in the ith column, EA will be the ith row of A.

As above, EA will be the ith row of A, but this time it will be multiplied by 2.

() ()
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Here, E'A is the twice the first row plus the third row. In general EA will be made up by
multiplying the ith row of A by the ith element of £, and then adding these rows together.
(d) In general, if E is zero except for a p in the kth entry, then EA will be the kth row of A multi-
plied by p. To test this,

>> A = round( 10*(2*rand(3,5)-1))

A =

-5 -9 -4 -1 5

-8 0 8 9 5

9 -2 1 -9 7

> E=[030]; A 3 in the 2nd entry.
>> E*A % This will be the 2nd row of A, multiplied by 3.
ans =

-24 0 24 27 15

This may be repeated with a different choice of E and A.
(e) In general, if E has a p in the kth entry and a ¢ in the jth entry, and zeros elsewhere, EA will be
the kth row of A times p plus the jth row of A times gq.

>>E = [03 1]; % 3 in the 2nd entry. 1 in the 3rd entry.
>> E+A Y% This will be 3*(2nd row) + 1%(3rd row).
ans =

-15 -2 25 18 22

This may be repeated with a different choice of E and A.
(f) You should find the same results as in (d) and (e), except using columns instead of rows:

>>F = [0; 0; 2; 0; 0] % A 2 in the 3rd entry.
F =

O O N OO

>> A*F % This will be 2 times the 3rd column of A.

This may be repeated with different A’s and F'’s.
9. (a)
>> A = round( 10#(2*rand(3)-1))

-7 7 §
-10 3 10
4 5 8

>> B = round( 10*(2*rand(3)-1))
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>> UA = triu(A) ) The upper triangular part of A.

UA =
-7 7 5
0 3 10
0 0 8
>> = triu(B) % The upper triangular part of B.
UB =
-5 0 -2
0 2 7
0 0 -5
>> UA*UB
ans =
35 14 38
0 6 =29
0 0 -40

This has the property that UA*UB'is also upper triangular. When this is repeated for larger matrices,

UA*UB will still be upper triangular.

(b) If A and B are upper triangular matrices, then C = AB is also an upper triangular matrix.
Proof: The matrix A is upper triangular when a;; = 0 for any ¢ > j. Since B is also upper trian-
gular, b;; = 0 when ¢ > j. What we wish to show is that ¢;; = 0 for ¢ > j. Assume that ¢ > j. If

we use summation notation,
n

cij = E aikbk;.

k=1

Split this sum into two sums: k < ¢ and k > @:

i-1 n
cij = E airb; + E airbi;.
k=1 k=i

In the first sum, we have i > k so a;x = 0. In the second sum, we have k > i > j, s0 bx; = 0. In
either sum, we are just adding up 0, so ¢;; = 0. Which implies that C is upper triangular.

(c¢) The product of two lower triangular matrices is also lower triangular. To test this, generate two
random lower triangular matrices.:

>> A = tril( round( 10#(2*rand(3)-1)) )

A =
-2 0 0
0 7 0
-7 2 -7

>> B = tril( round( 10*(2*rand(3)-1)) )

B =

10 0 0

-2 -5 0

=7 0 -7
>> A*B  J, This is also lower triangular.
ans =

-20 0 0

-14 -35 0

-26 -10 49
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10. (a)
>> A = round( 10%(2*rand(5)-1))
A=
-2 -7 -8 -7 6
-6 9 -7 6 9
-9 -2 -9 -1 3
8 -7 -3 -3 -6
-1 8 -5 -1 4
>> B = triu(a,1)
B =
0 -7 -8 -7 6
0 0 -7 6 9
0 (o} (o} -1 3
0 0 (o} (o} -6
0 0 0] 0 0
B is the matrix made from A with nonzero elements above the main diagonal. If we call the di-
agonal above the main diagonal the first diagonal and the one above that the second, and so on,
B has zeros below the first diagonal. Type help triu for more information about triu.
>> B"2
ans =
0 0 49 -34 -45
0 0 0 7 -7
(o} 0 0 0 6
0 0 0 0 0
0 0 0 0 0
B? has zeros below the second diagonal. Similarly, B3 will have zeros below the third diagonal.
B5 = 0, so B is nilpotent with index 5.
(b)
>> B = triu(A,2)
B =
0 (0] -8 -7 6
0 0 0 6 9
0 ) 0 ) 3
0 0 0 0 0
0 0 0 0 0

This time, B has zeros below the second diagonal.

>> B2

ans =
0 (o} 0 0 -24
0 0 0 0 0
0 0 0 (o] 0
0 0 0 0 0
0 0 0 0 0

B? has zeros below the fourth diagonal. B2 will be zero, so B is nilpotent with index 3.
(c) If we repeat (a) with a 7 x 7 matrix, we will find that B* will have zeros below the kth diagonal.
This means that B will be nilpotent with index 7. If we repeat (b) with a 7 x 7 matrix, we will
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find that B* will have zeros below the 2kth diagonal. This means that B will be nilpotent with
index 4.

(d) If we choose B = triu(A,j), then B* will have zeros below the j-kth diagonal. For a 6x 6 matrix,
B will be nilpotent with index 3 when we choose j to be the smallest number so that j - 3 > 6,
which is 2.

>> A = round( 10%(2%rand(6)-1))

A =
7 -6 -5 -4 6 -7
-8 -8 4 -6 -7 10
-8 -2 -4 -10 -2 -5
5 9 6 -6 2 -5
3 9 6 10 -6 -8
-6 -2 -2 -5 7 -6

>> C = triu(4,?2)

C =
0 0 ) -4 6 -7
0 0 0 -6 -7 10
0 0 0 0 -2 -5
0 0 0 0 0 -5
0 0 0 0 0 0
0 0 0 0 0 0

>> C~2 Y% This is not zero.

ans =
0 0 0 0 10 45
0 0 0 0 0 30
0 0 0 0 0 0
(o] 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

>> €"3 % This is zero. So index of nilpotency of C is 3.

O O O O 0O
O 0O O O OO
©O OO OO0 O
O O O OO0 o0
© O O OO O
©C O O OO0 O

11. First generate the eight matrices:

>> A = round( 6*( 2%rand(2) - 1))
A =

3 -2

6 -3
>> B = round( 6*( 2*rand(2) - 1))
B =

-5 5

2 -3
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>> € = round( 6*( 2*rand(2) - 1))

C =
-1 0
3 -3
>> D = round( 6*( 2*rand(2) - 1))
D =
-3 -4
-2 0
>> E = round( 6*( 2*rand(2) - 1))
E =
5 -5
5 5
>> F = round( 6*( 2*rand(2) - 1))
F =
(o} -2
0 6
>> G = round( 6*( 2*rand(2) - 1))
G =
0 -5
-3 5
>> H = round( 6*( 2*rand(2) - 1))
H =
-5 -1
0 -3
> AA = [ A B; C D] % The block matrix.
AA =
3 -2 -5 5
6 -3 2 -3
-1 0 -3 -4
3 -3 -2 0
>> BB = [ E F; G H] % Another block matrix.
BB =
5 -5 0 -2
5 5 0 6
0 -5 -5 -1
-3 5 0 -3
>> AA*BB
ans =
-10 25 25 -28
24 -70 -10 -23
7 0 15 17
0 -20 10 -22
>> K = [ A*E+B*G A*F+B*H; C+*E+D*G C*F+D*H]
K =

-10 25 25 -28
24 -70 -10 -23
7 0 15 17
0 -20 10 -22



>> AA*BB - K

ans =
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

In fact, AA*BB will always be the same as K.

12.

In general, D will be AB. To see this, notice that the kth term in this sum is the product of the kth

>> A = round( 10*(2*rand(3,4)-1))

8 9 5§ -10
1 -9 7 4
-1 5 -7 7

>> B = round( 10*(2*rand(4,5)-1))

7 -1 1 0 8
-5 -4 6 9 2
-2 -6 -9 5 7

1 =7 1 1 -7

Vector and Matrix Products

>> D = A(:,1)*B(1,:) + A(:,2)*B(2,:) +

A(:,3)*B(3,:) + A(:,4)*B(4,:)

D =
-9 -4 7 96 187
42 -35 -112 ~42 11
-11 -26 99 17 -96
>> D - A*B
ans =
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

MATLAB 1.6

column of A and the kth row of B. The ijth entry in this matrix will be: a;zbr;. When we add to-
gether all of the matrices, the ijth entry will be Z;‘:l a;xbij, which is the ijth entry of AB.

13. (a)

>> AB = zeros(3,5);
>> AB(1,[1 2]) = [1 1];
>> AB(2,[2 3]) = [1 1];
>> AB(3,[1 4 5]) = [11 1]
AB =
1 1 0
1 1
1 0 0 1 1

o o
o o

7
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(b)

()

>> BC = zeros(5,8);

> BC(1,[1 35]) = [1 1 1];

>> BC(2,[347]1) = [111];

>> BC(3,[1568]) =[1111];
>> BC(4,8) = 1;

> BC(5,[56 6 7]) = [1 1 1]

BC =

O O O =
O O O O O

O O =
O O O = O
= O K O =
- O » O O
= O O +» O
O = = O O

0

>> CD = zeros(8,10);
>> cD(1,[1 2 3]) =11 1];
> ¢D(2,[346]) = [111];
>> CD(3,[8 9 10]) = [1 1 1];
>> cD(4,[457]) = [111];
>> CD(5,[1 4 6 8])
>> cb(6,[2 4]) = [1
7

[ |

>> ¢p(7,[1 5 9])
>> CD(8,[1 2486
ch =

o
[y
o
[ )
~
i
™
[y
[
[y
[y
-
—
[y
d

- - O KM OOO K
» O+, OO0 OO0 R
O O O O O O + =
O - OO
O+ OOk OO0 O
- O O+ OO0 r» O
O O O+ O O O
O OO Kr O+ OO0
= = O O O+ OO0
- OO OO0+ OO

Person i in group 1 will have contact through person j in group 3 through person k in group 2

if AB;z = 1 and BCy; = 1, or in other words AB;; BCi; = 1. If we sum over k, this will tell
us how many indirect contacts person ¢ has with person j. So the indirect contact matrix will be
AB - BC. Similarly, to get from group 1 to group 4 via groups 2 and 3, we will multiply all three
matrices together:

>> AD = AB*BC*CD

AD =
3 1 1 2 2 1 1 3 3 2
4 1 4 2 2 2 2 3 2
5 3 1 4 1 3 1 3 3 2

None of the entries are zero. This signifies that everybody in group 1 has some indirect contact
with each person in group 4. Since the (1,5) entry is 2, there are 2 different paths that connect-
ing person 1 in group 1 with person 5 in group 4. Similarly, since the (2,1) entry is 4, there are 4
different paths connecting person 2 in group 1 with person 1 in group 4.

In order to find the total number of contacts a person in group 4 has, we add the rows of the in-
direct contact matrix. From problem 12, we see that a simple way to do this is to multiply by

[111].

>> ones(1,3) * AD
ans =
12 7 3 10 5 6 4 8 9 6
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The person with the most indirect contacts is person 1, with 12 contacts. Person 3 has 3 con-
tacts, which is the least. Similarly, we can add the columns together to find out how many indi-
rect contacts each person in group 1 has.

>> AD * ones(10,1)
ans =

19

25

26

Person 3 has the most indirect contacts with people in group 4, and so is the most dangerous.

14. (a) Column one means that of the households using product 1, after one month 80/switch to prod-
uct 3. Column two means that of the households using product 2, after one month 75/switch to prod-
uct 3. Column three means that of the households using product 3, after one month 90/switch to
product 2. '

(b) Since z is the distribution of households using the products after 0 months, Px will be the distri-
bution of households using the products after 1 month. Similarly, P*x will be how many house-
holds use each product after k¥ months.

(c)
>> x = [10000; 10000; 10000];
>P=[.8 .2 .05
.05 .75 .05
.15 .05 .9 ]
P =

0.8000 0.2000 0.0500
0.0500 0.7500 0.0500
0.1500 0.0500 0.9000

It may be convenient to round off your answers. One way to do this is to set the output format
to bank. This rounds numbers to the nearest hundredth.

>> format bank

>> P°5 % x
ans =
10275.83
5840.35
13883.83
>> P710* x
ans =
9477.30
5141.24
15381.46
>> P715 * x
ans =
9142.60
5023.74
15833.66
>> P720 * x
ans =
9038.77
5003.99

15957.24

73
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>> P25 * x

ans =
9010.03
5000.67
15989.30
>> P30 * x
ans =
9002.52
5000.11
15997.37
>> P"35 * x
ans =
9000.62
5000.02
15999.36
>> P740 * x
ans =
9000.15
5000.00
15999.85
>> P45 * x
ans =
9000.04
5000.00
15999.96
>> P°50 * x
ans =
9000.01
5000.00
15999.99

As n gets larger, P"x tends to (900,500, 1600). This may be interpreted by saying that eventu-
ally every month the same number of households switch to product ¢, as switch from product i,
fori=1,2,3.

(d)

>> x = [0; 30000; 0];

>> P75 * x

ans =
12056.86
9201.75
8741.39

>> P60 * x
ans =
9000.04
5000.00
15999.96

Although for small n, P"x is different from that in (c), for large n, P"x tends to the same value:
(9000, 5000, 16000).
(e) For any choice of x, P"x will tend to the same vector: P"x — (9000, 5000, 16000).
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(f)
>> P°50
ans =
0.30 0.30 0.30
0.17 0.17 0.17
0.53 0.53 0.53

>> 30000 * P50

ans =
9000.00 9000.04 8999.99
5000.00 5000.00 5000.00
16000.00 15999.96 16000.01

When n is large, the columns of 30000 P" are very close to each other, and to the vector
(9000, 5000, 15000). So that when 300000P" is multiplied by any vector x, it will be close to
(z1 + x2 + x3) times this vector.

(g)

> P =1[.8.1.1; .05 .75 .1; .15 .15 .8];
>>n = 50; Y% Try this for n= 5,10,15,25...
>> 1000 * P°n

ans =
333.33 333.33 333.33
238.10 238.10 238.10
428.57 428.57 428.57

>> format Y Don’t forget to return to normal output format at
>> % the end of this problem.

In the limit, the columns of 1000P™ tend to the vector (333.33,238.1,428.57). This will be the
long term distribution of cars no matter what the starting distribution is. A car rental agency
could use this information by planning to have a larger parking lot at office 3 than at office 1, or
by planning to hire more mechanics at office 3 than at office 1.

15. (a) Column 1 says that 40% of the fish in group 1 survive to belong to group 2 the next year. Col-
umn 2 says that 20% of the fish in group 2 stay in group 2, and 50% of the fish in group 2 survive to
be in group 3 the next year. This would happen if group 2 covers fish in an age range of more than 1
year. Column 3 says that each fish in group 3 has 2 babies, and that 20% survive and stay in group 3,
and 50% survive and enter group 4. Column 4 says that each fish in group 4 has 2 babies, and then
20% survive to stay in group 4 and 40% survive to enter group 5. Column 5 says that each fish in
group 5 has a 10% chance of survival to stay in group 5.
(b) If x is the distribution of fish at this moment, then y = Sx will be the number of fish after one
year. Since y is also a distribution of fish, Sy = S - Sx = S§%x will be the number of fish one year
later, or two years from now.

()

> S = [

coowo
ococwnno
oconmNvonN
BV OON
woooo
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>> x = [5000; 10000; 20000; 20000; 5000];
> n = 10; floor(S~ n#*x)
ans =
41016
21666
12949
7754
3709

>> % repeat for n=20,30,
> n = 50; floor(S~n#*x)
ans =
49063
24412
15183
9443
4179

After about 10 years, the population grows steadily. The growth rate will be exponential.
(d)

> 5(1,3) = 1;

> n = 10; floor(S~n#*x)

ans =
165774
8573
6572
4100
2105

>> Y, repeat for n=20,30,
>> n = 50; floor(S~n*x)
ans =
550
305
212
147
71

This time, the population decays exponentially. Not enough new fish are being born to keep the
population steady.

>> S(1,3) = 2; 5(3,2) = .3;"
>> n = 10; floor(S n*x)
ans =

13280

8007

3334

2438

1321

>> % repeat for n=20,30,
>> n = 50; floor(S n*x)
ans =
100
58
25
18
9
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Again, the total population decays when the survival rate from group 2 into group 3 is dropped
from 50% down to 30%. Not enough fish survive to be group 3 in order to create new fish.

(e) At the end of the first year, the number of fish that have survived will be Sx. If we harvest h
of these fish, we will end up with u = Sx — h fish. Similarly, Su will be the number of these
remaining fish that survive to the end of the second year. If we harvest h of these, we will have
Su — h fish remaining.

(f)

>> §(1,3) = 2; S(3,2) = .5;
>> h = [0;0;0;0;2000];
> u=S*x-h
u:
80000
4000
9000
14000
6500

>> u=S8%u -h J This command should be repeated several times.

46000
32800
3800
7300
4250

After two more iterations of the last command, the vector u will have a negative number in the
last entry. This means that we may harvest this many fish for 3 years, and at the end of the
fourth year, there will be less than 2000 mature fish to be harvested.

(g) After repeating the following experiment, for different values of n, you will find that u begins to
drop for the first few years, and then begins to increase after about 5 years. If n is chosen to be
1530 or smaller, u will never be negative.

>> n = 1530;
>> h =[0;0;0;0;n];
>> u = S*x ~h
u =
80000
4000
9000
14000
6970
>> u = S*xu -h % This step should be repeated several times, until
>> % u begins to rise again.
u =
46000
32800
3800
7300
4767

(h) If the above experiment is repeated using nonzero values in the last two entries of h, the total
harvest can be improved. For example, if h = (0, 0,0, 1500, 790), the total harvest will be 2290,
and the population of fish will not become negative over 15 years. These values can be improved
by slightly changing h.
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Section 1.7
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2)- ()

1-1

Ty _7
1-5 6 zz =1 8
10 3 9
T4
Ty 0
g = 0
I3 O
2z, + z3=2
9. =3z, + 4z, =3
5z9 + bz3 =5

2z1 + 3z2+ z3=0
12. 421 — 29 + 523 =0
3z, + 629 — T3 =0

Tz, + 222 =1
15. 31:1 + Ty = 2
6z, + 92, =3

3
(5) , 21 =3/2,zy =5/4, z3 = -2/

0
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22.

23.

24.
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2 1-1-1]2 10 1/3]2
20. [2 1 2]4]—{0 3 4|0)] {01 4/3]0 x, = (2,0,0)
1 -4 5|2 0-3-4]0 00 0|0

1-1-1]0 1-1-1]0 101/31(0
21 2|0 —-{0 3 4(0)]—]014/31{0 xp = z3(—1/3,-4/3,1)
1-4-5]0 0 00 0fO0

x =(2,0,0) + z5(~1/3,—4/3,1)

11—123_}11-12 3_}103
32 1-115 0-1 4-7|4 01 -4

1101 2|3 - 1 1-1 2]3 - 10 3 -5
32 1-115 0-1 4-7(-4 01-47
Xhp = (—'31’3 + bx4,4z3 — Tx4, 3, 1:4)

X = (—1,4,0,0) + (—31,‘3 + bxy,4x3 — 7174,1?3,1,‘4)

-1 100 -1/2
1]—-[o0o10 1/4
001 -1/4

5
4
-3

1-11-110 1-11-1
-2 3-1 2{0}—]0 110
4 -2 2-3]0 0 221

xp = 24(1/2,—-1/4,1/4,1)
x = (5,4,-3,0) + z(1/2,~1/4,1/4,1)

Plugging y = c1y1 + c2y» into the left side of the differential equation gives, since (cy)” = cy” and
(1 +v)" =y + vy

ciy) + ey + a(z)(cryy + c2ya) + b(z)(ciyn + caya) =c1(yy + a(z)y) + b(z)y1) + ca(vh + a(e)vh + b(z)y2)
= ¢1(0) + ¢2(0) = 0

Y — ¥g +a(@)(y — vy) + (=) (¥ — vq)
= (4 + a()y, +b(z)yp) — (v + a(z)yg + b(z)yy)
=f(z) - f(z)=0

Thus, yp(z) — y4(x) solves y"(z) + a(z)y' (z) + b(z)y(z) = 0.
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MATLAB 1.7
1. (a)
>> A = round(10*( 2*rand(3)-1))
A =
-6 4 0
-9 9 7
4 -2 -9

>> b = round(10#(2*rand(3,1)-1))
b =

-9

1

>> R = rref([A b])

R =
1.0000 0 0 3.8053
0 1.0000 0 3.4579
0 0 1.0000 0.5895
>> x = R(:,4)
x:
3.80563
3.4579
0.5895
>> A*x Y First find A*x
ans =
-9.0000
1.0000
3.0000
>> A*x - b Y Compare Ax with b.
ans =
1.0e-14 *
0
-0.2665
0.0888

Instructor’s Manual

In theory, Ax — b should be zero, but in practice, the computer will have some round—off error.

Here the error is on the order of 1014,

> y = x(1)*A(:,1) + x(2)*A(:,2) + x(3)*A(:,3)
y:
-9.0000
1.0000
3.0000

>> y-b
ans =
1.0e-14 *
0
-0.2665
0.0888

Again, y is the same as A # x, so it will be b up to some round-off error.
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(b) (i)
>> A =[49 17 5
21 5 -1
5919 4
9 523 -4 ]
>> b = [11; 9; 16; 40];
>> R = rref([A b])
R =
1 0 2 -1 5
0 1 1 1 -1
0 0 0 0 0
0 0 0 0 0
The general solution will have z3 and x4 arbitrary, £; = —2x3+ 2445, and 2 = —z3—z4—1.

We may pick, for example, 3 = 1 and z4 = 0, to get the particular solution:

>> x = [3; -2; 1; 0];
(ii)
>> A*x Y, This should be the same as b.
ans =
11
9

16

40
>> y = x(1)#A(:,1) + x(2)*A(:,2) + x(3)*A(:,3) + x(4)*A(:,4)
y -

11

9

16

40

As in (a), if x is a solution of the system with [A b] as augmented matrix, Ax = b, then Ax
and z1A(:,1) + - - - + z4A(:,4) = y are both b.

(iii) If this is repeated with other choices of z3 and z4, the same results will occur: Ax = b and
y = b. For example:

> x =10 4; -3; 1; 1];
>> A*Xx
ans =

11

9

16

40

(iv)
>> y = x(1)*A(:,1) + x(2)*A(:,2) + x(3)*4(:,3) + x(4)*A(:,4)
y -
11
9

16
40

(c) The solution of a system of equations represented by [A b] is the same as the solution of the ma-
trix equation Ax = b. Also, multiplying a matrix by a single column is equivalent to adding
multiples of the columns of this matrix.
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2. (a) The ij entry of Ax is the inner product of the ith row of A with the jth column of x. Since x has
only one column, j must always be 1, and the first column of x is just x itself. Since Ax = 0, the
inner product of the ith row of A with x is zero. This means that the ith row is orthogonal to x.

(b) This can be done by solving Ax = 0 where A is the matrix whose rows are the given vectors.

> 48 =1012-304; 5 -520 1];

>> rref(A)
ans =
1.0000 0 -0.7333 0 1.4667
0 1.0000 -1.1333 0 1.2667
For a solution, we may choose 3, x4, and x5 arbitrarily, and then set x; = 733323 — 1.4667z5

and zo = 1.1333z3 — 1.2667xs.

3. (a) The matrix x solves the nonhomogeneous system Ax = b. The matrix z was a solution of the
homogeneous system Az = 0. If we set y = x + sz, then we found that y was also a solution of the
nonhomogeneous system Ay = b. The corollary tells us the converse, i.e. that any such solution can
be written as y = x + sh where H is a solution of Ah = 0.

(b) (i) Refer to the solution of 1(b) above. The matrix R is the reduced echelon form of [A b]. Since
two variables can be chosen arbitrarily in the solution of Ax = b, there are infinitely many solu-

tions.
(i)
>> x = A\b
Warning: Matrix is singular to working precision.
x -
Inf
Inf
Inf
Inf
>> % Since A is singular, it has no inverse. Instead, enter a solution
>> % from the answer to 1(b).
>>x = [5; -1; 0; 0];
(1ii)
>> rref(4)
ans =
i 0 2 -1
0 1 1 1
0 0 (o] 0
(o] 0 o] 0
Solutions of Ax = 0 are of the form z3 and x4 are arbitrary, z; = —2z3 + 74, and z, =
—Xx3 — T4.

Pick one solution, with z3 =1,z4 =0

>z = [-2; -1; t; 0];
>> A*(x+z) % This should yield b.
ans =

11

9

16

40
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Another solution, with z3 =0, z4 = 1.

> z = [1; -1; 0; 1];
>> A*(x+z) ' Again, this should be b.
ans =

11

9

16

40

This can be repeated two more times by choosing other values for 3 and z4.

4. (a)
> A=[5580
4587
3989
911 6];
>> rref(A)
ans =
1 0 0 0
0 1 0 0
0 0 1 0
0 0 (0] 1

If we were to reduce [A b] for any b, we would still have the same left hand side. Since there
is a pivot in every row, the system will be consistent, and there will be a unique solution.
(b) If we solve Ax = b, for x, then we may write b as

b =c1z1 + coxy + c323 + €44
where c; is the ith column of A. For example:

>> b = round( 10*(2*rand(4,1)-1))
b =

-6

-9

4

4

>> R = rref([A b])

R =
1.0000 0 0 0 0.6476
0 1.0000 0 0 3.5799
0 0 1.0000 0 -3.3922
0 0 0 1.0000 -0.3361
>> x = R(:,5)
x:
0.6476
3.5799
-3.3922

-0.3361
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>> % Now we may write b as a combination of columns of A:
>> y = AC:,1)*x(1) + A(:,2)*x(2) + A(:,3)*x(3) +A(:,4)*x(4)

y =
-6.0000
-9.0001
3.9999
3.9999
Up to round off error, y is the same as b. This can be repeated two more times.
(c)
> A=[55 -50
45 -67
39 -159
91 T 6];
>> rref(A)
ans =
1 0 1 0
0 1 -2 0
0 0 0 1
0 0 0 0

It is possible that there is a b for which the reduced form of [A b] does not have a zero in the
(4,5) entry. Since the left hand side has all zeros in the fourth row, this would mean the system
is inconsistent. By experimenting with several possible b you can find that if b = (1, 0,0, 0)},
there will be no solution:

>> b = [1; 0; 0; 0];
>> rref([A bl)

ans =
1 0 1 0 0
0 1 -2 0 0
0 0 0 i 0
0 0 0 0 i

Notice that the above solution is inconsistent.
(d) If you start with a vector b which is a combination of columns of A, then there will always be a
solution of Ax = b.

>> k = round( 10*(2*rand(4,1)-1)) % generate 4 random numbers.

>> Y% Write b as a combination of columns of A:
> b = A(:,1)*k(1) + A(:,2)*k(2) + A(:,3)*k(3) +A(:,4)*k(4)
b =

35.0000

23.6475

5.9754

76.9836
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>> rref([ A b])

ans =
1.0000 0 1.0000 0 9.0000
0 1.0000 -2.0000 0 -2.0000
0 0 0 1.0000 -0.3361
0 0 0 0 0

This system is consistent.

(e) To see that this system will always have a solution, we only need to show that it has at least one
solution. However, writing b as a combination of columns of A using the scalars k;, is equivalent
to the matrix multiplication Ak = b. This means that the vector k will be a solution of Ax = b.
Since the system has a solution, it is consistent.

a) (i) For A from 4(c):
>A=[55 -50
45 -67
39 -159
91 7 6];
>> rref(4)
ans =
1 0 1 0
0 1 -2 0
0 0 0 1
0 0 0 0
(i1) The solutions of this homogeneous system have z3 arbitrary, and 3 = —z3, z2 = 2z3, and
rgq4 = 0.
(iii) If we set £z = 1, then we have z; = —1 and z3 = 2. This corresponds to

0= Ax = —1¢; + 2¢c3 + lez + Ocy,
where c; is the 7th column of A. Which can be rewritten as
c3 = leg — 2¢,.
To check this:

>> 1*A(:,1) - 2#A(:,2) % This should be the same as A(:,3).
ans =
-5
-6
-15
7

>> A(:,3) % This is the third column.
ans =
-5
-6
-15
7

(iv) This system only allows one arbitrary variable.
(v) If we let x be the third column of rref(A) then Ax will be the third column of A.
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(b)

> A =[49 17 5
21 5 -1
5919 4
9523 -41;
>> rref(A)
ans =
1 0 2 -1
0 1 1 1
0 0 0 0
0 0 0 0
The solution of this system will have z3 and z4 arbitrary, and z; = —2z3+24, and 23 = —z3—24.
If z3 =1 and z4 = 0, then we have £; = —2 and x5 = —1. This corresponds to
c3 = 2¢; + lc,.
Similarly, if z3 = 0 and ¢4 = 1, then we have £; = 1 and z; = —1. This corresponds to

¢y = —lecy + leo.

As above, if x is the third column of rref(A) then Ax will be the third column of A. Similarly,
if x is fourth column of rref(A) then Ax will be the fourth column of A. To check this:

>> R = rref(a);
>> x = R(:,3)
x:

O O RN

>> A*x Y This will be the 3rd column of A.

ans =
17
5
19
23
> x = R(:,4)
x =
-1
1
0
0]
>> A*x Y% This is the 4th column of A.
ans =
5
-1
4
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(c) First we generate a random matrix and modify it as directed.

>> A = round( 10*(2*rand(6,6)-1));
>> A(:,3) = 2#A(:,2) - 3%A(:,1);

>> A(:,5) = -A(:,1) + 2%A(:,2) - 3*A(:,4);
>> A(:,8) = A(:,2) + 4*%A(:,4)
A =
10 8 -14 -9 33 -28
4 -5 -22 8 -38 27
5 -1 -17 0 -7 -1
3 5 1 0 7 5
-9 0 27 -4 21 -16
3 -5 -19 10 -43 35
>> R = rref(A)
R =
1 0 -3 0 -1 0
0 1 2 (] 2 1
0 0 0 1 -3 4
0 0 0 0 0 0
(o] 0 0 0 0 0
0 0 0 (o} 0 0

This will be the same, for almost every random matrix that we start with. The solution of this
system has z3, x5, and z¢ arbitrary and z; = 3z3+ 5, €3 = —223 — 225 — z¢, and x4 = 3z5— 4.
As in (b) above, if we set one of the three arbitrary variables to 1 and the others to 0, and write
out x we will get:

-3 -1 0

2 2 1

X = 0 X = 0 or Xx = 0
o *=|-3| 4

0 0 0

0 0 0

Writing out Ax = 0 as a linear combination of columns of A, we will get the original equations:

>> A(:,3)
>> A(:,5)
>> A(:,6)

2%A(:,2) - 3*%A(:,1);
-A(:,1) + 2%A(:,2) - 3%A(:,4);
AC:,2) + 4*A(:,4)
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Section 1.8

1.

Since det A=2-2-3-1=1#0, A ! exists. A~} =1

or (211 0y _(21] 10y _ (21]1
32|01 01321 01]-3
20 4-2 10} 2-1 L_f 2-1
(01 -3 2)"*(01 -3 2>'S°A ‘(—3 2)

Instructor's Manual

2. Since det A = (—1)-(~12) — 1-12 = 0, A is not invertible.
0-1 01
— )l — -1 (. =
3. detA=0-1=-1+#0 A~ =( 1)(_1 0) (10)
4. Since det A =3 -3 =0, A~! does not exist.
5. A is not invertible since det A = ab—ba = 0.
1111100 11 111 00 10-1/2 1-1/2 0
6.{023j010]—-1013/2]01/20]—-101 3/2 0 1/2 0
5511001 00 -41-5 01 00 1| 5/4 0 -1/4
1001} 13/8 -1/2 -1/8 13/8 —-1/2 —-1/8
—|010]-15/8 1/2 3/8 A~l=| -15/8 1/2 3/8
001 5/4 0 -1/4 5/4 0-1/4
32 11100 12/31/3[1/3 00 10-1/341/3 -1/3 0
7.102 2010} —-]0 1 1 01/20]—=1]01 1 0 1/2 0
00-11001 0 0 1 0. 01 00 1 0 0 -1
100]1/3 -1/3 -1/3 1/3-1/3 -1/3
—-{1010 0 1/2 1 A"l = 0 1/2 1
001 0 0 -1 0 0 -1
111{100 100j1-10 1-1 0
8. {o0111010}—=1010]0 1-1 At=10 1-1
0011001 0010 0 1 0 0 1
1 6 21100 1 6 2100 16 2 1 00
9.1-2 3 5(010]—-10 15 9} 210} —1]101061{0.1333 0.0667 0
712-41001 0-30 -18 | -7 0 1 00 O -3 21
A is not invertible.
3 110|100 1-1 210 10 10 1/2| 1/4 1/4 0
0. {1 -12]010}]—]0 4-6}1-30)—1}101-3/2| 1/4-3/40
1 117001 0 2-110-11 00 21-1/2 1/21
100/| 3/8 1/8 -1/4 3/8 1/8 ~1/4
—-|010§-1/8 -3/8 3/4 A= -1/8-3/8 3/4
001]-1/4 1/4 1/2 -1/4 1/4 1/2
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A is not invertible.

11.

— o —
— N

021_.

OO~
O - O

11

7/3 -1/3 -1/3 -2/3
4/9 -1/9 -4/9 1/9

120
1-10
-1/9 -2/9 1/9 2/9

-1

] -
)

10
-2 01
0

1

2-100
-3-110

-1
3 210
1
1. 000

-2-111

0
1

3
7
0

|

3

-2
00-3 2
00 6 -1

2
2
00 -7 -10

0

0

0
1

1

0
0
1
0

1
0

-5/3 2/3 2/3 1/3

1000
-1100
-1010
-1001
1000
1100
2010
1001
00

1 11
21
0-2 160
1000
0100
0010
0001
10 2 3
01 2 7
01-5 -3
00 710
) (1-30-2
0 3 11
5/2 0 3/4 0 1
1/2 0 1/4 0 _
-3/21 3/4 0
-1/2 0 -3/4 1

01 0 2
1-1-2 2
01 3 -3
-2 2 3 -2

1
01
0 2 21

|

1/9
1/9 2/9
1/3

7/3 —1/3 —1/3 —2/3
1000
0100

010
00

0
0

1000
10 3/2-5/4

0100
0010
0001
1000
0100
0010
0001

4/9 —1/9 —4/9
3

—-1/9 —2/9
1/2 1/4

1
00 -1/2 3/4
00 -1/2 1/4
1000
0100
0010

4
3

~5/3 2/3 2/3
1

11

2 -1 2
1 -1 21

3 32

00
A_1:(
10 23
1 0

2 -1
-10 57
1 -3 0 2
3 -12 -2 -6
-2 10 2 5
-1 6

01

0001
A‘I::(

1
1
1

A is not invertible.

15. (
—

NN MmN

(=R B )

— o= NN

O — O N
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16. ABCC™'B~1A~! = ABIB™'A~! = ABB1A~! = AIA~! = AA~! = I. Hence, by theorem 8, ABC
is invertible and (ABC)~! = A-1B-1C-1.

17. Show Ay Ay ---Ap Azl A7YA7! = I. Then by theorem 8, A1 A; - - Ay, is invertible with inverse
Al AFTATY

3 4\ [ 3 4 9-812-12\) _
18. (-2 —3> (-2 —3) = (—6+6 —8+9) =1

2
19. If A= %I then A2 =I. If ay; = —asy and aza;2 = 1 — a?; then (—a” an) =

azy az2

.

a3o + a12a21 —as2a;33 + aizazz \ _ I

32 )=
—az2a21 + azaas; aziaiz + ajy

4/5 —-1/5 0 1.7857 0.7143 0.7143
2. I-A=|-2/5 3/5-3/5 (I-A)"'= [ 2.1492 2.8571 2.8571

~1/5 -1/10 3/5 0.9524 0.7143 2.3810

96.4
x=(I-A)tex | 235.7
138.1

21. Bx = 0 gives m equations in n unknowns. Since m < n, there are an infinite number of solutions. In
particular, there exists a nonzero solution. Hence, there exists a nonzero vector x such that ABx = 0.
By theorem 6, AB is not invertible.

92. (a) detA=—i?—2=-1 A‘1=—1(—l_2)= 11—3)

(b) detA=1-#=2 A" =%(1+(§ 1—2‘) - <(1+i)/(2) (l—i)/g)
3
1

100 1 i 0 10 i 0 i0
(c) 010]={0 1 - —{01- 4 -10
14i 14 [0 0 1 0 1+i 14 00 2| -1+ 1+i 1

1 0
-1 1
0 0
(1 0 (1+i)/2  (1+i)/2 4/2) ( A+i)/2 (1+4)/2 —i/2)
— 101 A"l =
00

-(141)/2 (-1+41)/2 1/2 —(1+9/2(-1+9)/2 1/2
sind cos0 0\
23. | cos@® —sind 0 = I; this matrix is its own inverse. You can discover this by trying to do row

i 0
0 1

0
0
1

(-1+i)/2 (1+i)/2 1/2 (-1+4)/2 (1+4)/2 1/2
0 01

elimination or by finding the inverse of the upper left 2 x 2 block using (12) in Theorem 4.

1/2 0 0
24. A== 01/3 0], from (A]|I) - (I|A™Y).
0 01/4



25.

26.

27.

28.

29.

30.

31.

32.

The Inverse of a Square Matrix Section 1.8

Let D be a diagonal matrix. Suppose D is invertible with inverse A. Since AD = I, then a;;d; = 1
for each i. Hence, the diagonal components of D are nonzero. Conversely, suppose d;; # 0 for each i.
Then the only solution to Dx = 0 is the trivial solution. By theorem 6, D is invertible. Or you can

write down D1 directly as in Problem 26.

aif 0--- 0
0azy -+ O
Al = . ) , from (A | I) —->(I]A"1).

0 0---a;}
21-1|100 10-7/6|1/2 -1/6 0 100]1/2-1/6 7/30
03 4({010]—=101 4/3 0 1/30]—=]010 0 1/3 -4/15
00 51001 00 5 0 01 001 0 0 1/5

1/2 -1/6 7/30

Al = 0 1/3-4/15

0 0 1/5

100(100 100100
-200(010}—1461]001 A does not have an inverse.
461001 00011210

If U is upper triangular with all diagonals nonzero, then divide each row by its diagonal entry. The
result is an echelon form of U with n pivots. So by Theorem 6.v, U is invertible. Conversely, if U has
some diagonal zero, let j be such that uj; = 0 is the first zero on the diagonal. Then form x = (),
with zx = 0 for £ > j and z; = 1, but the ¢,k < j unknown. Then the nonzero equations Ux = 0
formed from the first j — 1 rows of U and this x can be backsolved to get the remaining zy, since they
have the form

AgkZk + - - -+ agj =O,akk¢0,k <73

Thus Ux = 0 has a nonzero solution and so U is not invertible.

Row reducing (U | I) to (I | U™!) requires only dividing through by the diagonals of U and then
adding multiples of lower rows to higher rows, i.e. only backsolving is needed as U is already essen-
tially in echelon form. But both these types of row operations only change the elements on or above
the diagonal of the right hand block. Thus when this reduction is done A = U~! will be upper tri-
angular. (You can also solve this using partitioned matrices. To get an idea look at the solution to
Problem 49.)

1
( 2 -1 |O> — (1 -1/2 ‘0> Ifx= (21.) then Ax = 0. For example, (;) is one such vector.

0 0
0 —2.5z -5
0] Ifx= 0.5z | then Ax = 0. For example, 1] issuch a

0 T 2

91
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33. Let ¢ be the number of chairs and ¢ the number of tables produced each day. We have 8-12 = 96 labor

hours per day in the machine shop. Hence, for the machine shop we must have %874 e+ %4.—,‘2 -t = 96.

Similarly, 41—870- -c+ §1i‘7-0- -t = 820 = 160 for the assembly and finishing division. Write this system

384 240

_ _| 17T (e _f 98 130,560
as Ax = b where 4 = 480 640 , X = (t>,andb_ (160)' Since det A = 289 # 0, then

17 17

640 240

- 289 17 17 96 3 .
— A-1p — =
x=A"1 = 130,560 480 384 160 ) = \2/ Hence, 3 chairs and 2 tables can be produced

11T
each day.

34. Let ! be the amount of love potion and ¢ be the amount of cold remedy needed. The witch wants to

1 5

3— 5b—
13 13 and b = (10), Since det A = '1—(40'

2 10 14 169
2— 10—
13 013

fihd X = (é) such that Ax = b where A =

140 70
280 oaeip . 13|13 13 | (10 _ [3/2 1
140—-28~70)—-—i§-¢0,thenx—A b—280 08 40 (14)—( 1 . Hence, 1§batches
13 13

of love potion and 1 batch of cold remedy are needed.

0.10 0.12 a 1 .
35. The farmer needs Ax = b where A = (0'15 0.08)’ X = (b)’ and b = (1> Since det A = —0.01 ;6
_ 0.08 —0.12 1 4 . .
0 then x = A~'b = —100 (_0'15 0.10) (1) = (5) Thus, 4 units of type A and 5 units of type

B are needed.

36. (a) 0.293  (b) 200,000-0.293=58,600 (c) 0
(d) 50,000 -0.044 = 2,200

0.293 0 0
37. (a) technology matrix A = | 0.014 0.207 0.017
0.044 0.010 0.216

0.707 0 0
Leontief matrix =T — A= | —-0.014 0.793 —-0.017
—0.044 —0.010 0.784

1414 0 0 13,213 18,689
(b) (I—A)~!={0.0271.2610.027 x=(I—-A)"1| 17,597 | = | 22,598

0.080 0.016 1.276 1,786 3,615
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It would require 18,689 pounds of agricultural products, 22,598 pounds of manufactured goods, and

38.

40.

41.

42.

43.

45.

46

3,615 pounds of energy.

10). .
( 0 1> invertible

0

6 2 16 2
0 15 9] —|013/5] not invertible
0-30 —18 00 O
2-114 1-1/2 2
-1 05)—=1]0 1 —14 | not invertible
19 -73 0 0 O
1 1 11 11 1 1 11 1 1
1 2-12 N 01-2 1 N 01 -2 1 nvertibl
1-1 21 00-3 2 00 1-2/3 ] 'mverHbe
1 3 32 00 6-1 00 O 1
10 23 102 3
-11 04 012 7 . .
291-13]1 " loo1 10/7 not invertible
-10 57 000 0
. Since a11a22 — ajzaz; # 0, then either a;; or a;3 is nonzero. We may assume without loss of generality
that aiy # 0.
((111 aia 1 0) N (1 alg/all 1/(111 0)
a; ax |0 1 0 azz —ajzas/a;; |—az/an 1

0

39.

1

(

; é) — ((1) (1)) not invertible

32 1 12/31/3
02 21— 06 1 1] invertible

21
32

. 1
0

-

1/2
1

10
01

) invertible

—(121/ det A

(122/ det A ——a21/detA

a11/ det A

)
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47.

48.

49.

(i) Suppose A is invertible. Then Ax = 0 implies x = A~!0 = 0. When reducing the augmented
matrix (A|0) to reduced row echelon form, we must have (A4|0) — (I]0). Using the same elementary
row operations will give A — I. Conversely, suppose A is row equivalent to I. Write (A|I) and row
reduce A to I. Then we will have (A|I) — (I|B). Hence, AB = I. We want to show BA = I. It will
suffice to show BAx = x for every n-vector x. Note that B is row equivalent to I. Hence, for every x,
we can find a y such that By = x. Thus, BAx = BA(By) = B(AB)y = Bly = By = x. Therefore,
A is invertible.

(if) Suppose A is invertible. Suppose Ax = b = Ay. Multiplying by A~! we obtain 4A~1(Ax) =
A~1(Ay). It follows that x = y. Conversely, suppose the system Ax = b has a unique solution for
every n-vector b. This implies A is row equivalent to I. Therefore, by part (i), A is invertible.

(iv) Suppose A is invertible. By (i) A is row equivalent to the identity matrix I,,. I, is in row ech-
elon form and has n-pivots. Conversely, suppose that an echelon form of A has n pivots. Then the
reduced echelon form of A is the identity matrix I,. Thus A is row equivalent to the identity matrix
I,. By (i) A is invertible.

. TA Ay Arg _ I10 . . . .
From (0 I) <A21 A22> = (O I) we obtain the following equations:

A+ AAy =1, A1g+ AAs =0, Asy =0 and Ay = I
Solving for A;; and Aj; we get Ajg = I and A2 = —A.

-1
IA I-A
s (24)7 2 (274).

From (ﬁ:i A'Z) (g;i g;z) = (OI OI> we obtain the following equations: A1 By = I, A;1 B3 =

O, A1 B11 + A22B91 = O and A1 B12 + A22B22 = 1. Solving for the B;; we get
Bll = Al—ll, Blz = O, le - A;zl(—AzlAl-ll) and Bzz = A;zl.

h (Au 0)—‘ ( Af 0)
us = .
Az Agg Az (—AnAT]) A7)
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CALCULATOR SOLUTIONS 1.8
The solution for Problem nn assumes the data has been entered into the matrix A18nn.

50. The inverse of A1850, calculated by A1850 is
[[ .099858156028 -.076501182033 -.076312056738 ]
[ -.101843971631 .272151300236 -.192056737589 ] .
[ .143262411348 -.067139479905 .075177304965 1]

51. The inverse A1851, calculated by A1851 (2nd) (ENTER) is
[[ -1.40754039497 .456014362657 .303411131059 ]
[ .657091561939 -.166965888689 -.154398563734 ]
[ .439856373429 -.26750448833 -.03231597846 ]}

52. The inverse of A1852, calculated by A1852 is
[[ -1.69701053654 1.60958317276 2.30794647641 1.41376091667 ]
[ -.793941492883 1.67786019382 .951949895801 .261501231662 ]
[ 1.95621257025 -.200637557471 -.462876267722 .357416829406 ]
[ -.654423076042 .€641726876009 -.249248482807 .536103553562 ]

53. The inverse A1853, calculated by A1853 (2nd) (ENTER) is

{[ .03984485542 .00954069806 .035197499863 .010590297574 ]
[ -.003683920834 .00460111628 4.2629849506E-4 -.005608453127 ]
[ .018345358489 .009413418129 .008529325192 .00297300599 ]
[ .019410170095 .007025671643 .025503332841 .015762697722 11

54. The inverse of A1854, calculated by A1854 is

[[ .333333333333 -.208333333333 1.675 -1.42142857143 ]

[ O .125 -.325 .578571428571 ]
[ O 0 .2 -.114285714286 ]
[0 0 0 -.142857142857 ]]

which has zeros below the diagonal.

55. The inverse of A1855, calculated by A1855 is

[[ .04329004329 -.125690401552 ~-.196440007897 .126871293496 .203412258426 ]

[

[ O -.068965517241 -.067111605488 .035660968327 .113274788336 ]
[ O 0 -.02688172043 .019100169779 .007849426165 ]
[0 0 0 .010964912281 ~;OO3226349456]
[ O 0 0 0 .02132196162 1]

which has zeros below the diagonal.

56. The results in Problem 54 and 55 suggest that the inverse of an upper triangular matrix is upper triangular.
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MATLAB 1.8
L (a) (i)
> A =10123;254; 1-110];
>> R = [A eye(3)]
R =
1 2 3 1 0 0
5 4 0 1
1 -1 10 0 0 1
>> rref(R)
ans =
1 0 0 54 -23 -7
0 1 0 -16 7
0 1 -7 3 1
>> S = ans(:,[4:6])
S =
54 -23 -7
-16 7
-7 3 1
(i1)
>> S*A
ans =
1 0 0
0 1 0
0 0 1
>> A%*S
ans =
1 o] 0
1
0 0 1
Both SA and AS are the identity matrix. Hence, S is the inverse of A.
(ii1)
>> inv(4)
ans =
54.0000 -23.0000 -7.0000
-16.0000 7.0000 2.0000
-7.0000 3.0000 1.0000
This seems to be the same as S although S-inv(A) may not be exactly zero due to round off.
The command inv(A) computes the inverse of the matrix A.
(b)

>> A = 2*rand(5)-1

A =
0.8206 -0.3435 -0.5059 -0.8546 0.5330
0.5244 0.2653 0.9651 0.2633 -0.0445
-0.4751 0.5128 0.4453 0.7694 -0.5245
-0.9051 0.9821 0.5067 -0.4546 -0.4502
0.4722 -0.2693 0.3030 -0.1272 -0.2815



>> R = [A eye(5)];

>> rref(R)
ans =
Columns 1 through 7
1.0000 0
0 1.0000
0 0
0 0
0 0
Columns 8 through 10
1.7333 -0.2542
2.2202 0.2963
-1.8634 0.2153
0.8678 -0.6154
-1.6150 -0.2000
>> S = ans(:,[6:10])
S =
1.6785 0.1073
2.0062 0.1332
-1.5142 0.9549
0.0574 0.1234
-0.7602 1.0249
>> A*S
ans =
1.0000 0
0.0000 1.0000
0.0000 0.0000
0.0000 0.0000
0.0000 0.0000
>> S*A
ans =
1.0000 0.0000
0.0000 1.0000
0.0000 0.0000
0.0000 0.0000
0.0000 0.0000

>> inv(A) - S
ans =

1.0e-15 *
-0.4441 0.
0o -0.
-0.2220 -O0.
0.0278 -0.

0.1110 -0.

1943
0278
1110
0416
2220

The Inverse of a Square Matrix

0.3383
~-0.8329
0.1091
~0.5434
-1.8254

1.7333
2.2202
-1.8634
0.8678
-1.6150

.0000
.0000
.0000
.0000
.0000

O O+ OO

.0000
.0000
.0000
.0000
.0000

© O+ OO

0
0
0
0.1110
0.2220

0
0
0.0000

1
0

-0.2542
0.2963
0.2163

-0.6154

-0.2000

.0000
.0000

.0000
.0000

.0000
.0000
.0000
.0000
.0000

O = O O O

0.3886
0.4996
-0.1943
0
-0.1388

O O OO

1.0000

0.3383
-0.8329
0.1091

-0.5434

-1.8254

.0000
.0000
.0000
.0000
.0000

= O O O O

.0000
.0000
.0000
.0000
.0000

- O O OO

-0.2220
-0.1110
0.1943
0
0.2220

1.6785
2.0062
-1.5142
0.0574
-0.7602

% This should be zero up to round off error.

MATLAB 1.8

0.1073
0.1332
0.9549
0.1234
1.0249
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2. (i)

>> A= (1/13)* [2 7 5; 0 98; 7 4 0];

>> rref(4) Y% part (a)

ans =
i 0
0 1
0 0

>> B = inv(A)
B =
-32.0000

20.0000

11.0000

56.0000 -35.0000 -16.0000

-63.0000

41.0000

18.0000

>> % For part (c):
>> A*B % This should be I.

ans =
1.0000 0.0000 0.0000
0 1.0000 0.0000
0 0.0000 1.0000
>> B*A Y% This should also be I.
ans =
1.0000 0.0000 0
0 1.0000 0.0000
0 0.0000 1.0000
>> b = 2*rand(3,1) - 1 Y% Choose a random b, with 3 rowvs.
b =
0.0090
0.0326
-0.3619

>> rref([a b]l)
ans =

% Solve Ax=b.

Instructor’s Manual

% This will exist since there are no zero rows above

1.0000 0 0 -3.6191
0 1.0000 0 5.1571
0 0 1.0000 -5.7488
> x = ans(:,4); % Set x equal to the solution.
>> y = inv(A)*b % Solve Ax=b using inverses.
y:
-3.6191
5.1571
-5.7488
>> x-y % This should be zero up to round off error.
ans =
1.0e-15 *
0.4441
0.8882

-0.8882
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(ii)
> A= [2-45; 008; 7 -14 0];
>> rref(a) Y% part (a)
ans =
1 -2 0
0 0 1
0 0 0
>> B = inv(a) % This will not exist since there are zero rows above.
- Warning: Matrix is singular to working precision.
B =
Int Int Int
Int Inf Int
Inf Inf Inf
>> % For part (b): "singular" means that the matrix is not invertible.
(iii)
> A=[14-21;5197;74104; 07 -77];
>> rref(4A) ¥ part (a)
ans =
1 0 2 0
0 1 -1 0
0 0 0 1
0 0 0 0
>> B = inv(4A) % This will not exist since there are zero rows above.
Warning: Matrix is close to singular or badly scaled.
Results may be inaccurate. RCOND = 7.178166e-18
B =
1.0e+15 *
-3.6029 -1.8014 1.8014 1.2867
1.8014 0.9007 -0.9007 -0.6434
1.8014 0.9007 -0.9007 -0.6434
0.0000 0 0.0000 0.0000
For part (b): From the command rref, we see that A is actually singular. However, MATLAB
gives us an answer since round off error during the computation makes A seem to be invertible.
However, MATLAB gives a warning since it could tell “nonsingularity” might be due to round off
eITor.
(iv)

> A=[1461;5197,7484; 075 7];
>> rref(a) Y part (a)

ans =
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

>> B = inv(4) % This will exist since there are no zero rows.
B =
-0.1558 -0.0779 0.2208 -0.0260
0.0115 -0.1609 0.1133 0.0945
0.2121 0.1061 -0.1061 -0.0758
-0.1631 0.0851 -0.0375 0.1025
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>> Y% For part (c):

>> A*B
ans =
1.0000

0

0.0000
0.0000

>> B*A
ans =
1.0000

0

0

0.0000

>> b = 2#%rand(4,1) - 1

b =
0.9733
-0.0120
-0.4677
-0.8185

>> rref([A b])

0.0000
1.0000

0
0.0000

0.0000
1.0000

0
0.0000

% This should be I.

0.0000
0.0000
1.0000

0

% This should also be I.

0.0000
0.0000
1.0000
0.0000

- O O O

.0000
.0000
.0000
.0000

.0000

0

0.0000

1.

0000

% Choose a random b.

% Solve Ax=b.

Instructor’s Manual

ans =
1.0000 0 0 0 -0.2327
0 1.0000 0 0 -0.1172
0 0 1.0000 0 0.3168
0 0 0 1.0000 -0.2260
>> x = ans(:,5); % Set x equal to the solution.
>> y = inv(A)*b % Solve Ax=b using inverses.
y:
-0.2327
-0.1172
0.3168
-0.2260
>> x-y % This should be zero up to round off error.
ans =
1.0e-16 *
0
-0.5551
0
0.2776
v)
>> A = (-1/56) * [1 2 3 4 5
0-1 2-1 2
1 0 0 2-1
1 1-1 1 1
0 0 0 0 41;



>> rref(A) Y% part (a)
ans =
1 0 0
0 1 0
0 0 1
0 0 0
0 0 0
>> B = inv(A) % This
B =
8.0000 -40.0000
~12.0000 4.0000
-8.0000 -16.0000
-4.0000 20.0000
0 0

>> % For part (c):

The Inverse of a Square Matrix

O OO O
= O O O O

will exist since there are no zero rows above.

-8.0000
40.0000
8.0000
-24.0000
0

o]
0.0000
1.0000

0

0

%, This should also be I.

0.0000
0.0000
1.0000
0.0000

0

-56.0000
~28.0000
0
28.0000
0

0.0000
0.0000
0]
1.0000
0

22.0000
30.0000
20.0000
-18.0000
-14.0000

0.0000
0.0000

0.0000
1.0000

0.0000

0.0000
.0000
1.0000

o

% Choose a random b.

ve Ax=b.

0
0
1.0000
0
0]

>> A*B % This should be I.
ans =
1.0000 0
0 1.0000
0 0
0 0.0000
0 0
>> B*A
ans =
1.0000 0.0000
0.0000 1.0000
0 0
0 0.0000
0 0
>> b = 2*rand(5,1) - 1
b =
0.5230
0.5404
0.6556
-0.7493
-0.9683
>> rref([A b]) % Sol
ans =
1.0000 0
0 1.0000
0 0
0 0
0 0
>> x = ans(:,6);
>> y = inv(A)*b
y -
-2.0200
14.0423
-26.9510
-10.5699

13.5557

0
0
0
1.0000
0

0 -2.0200
o 14.0423
0 -26.9510
0 -10.5699
1.0000 13.5557

% Set x equal to the solution.
% Solve Ax=b using inverses.

MATLAB 1.8
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Instructor’s Manual

>> x-y % This should be zero up to round off error.
ans =
1.0e~13 *
-0.1066
0.0355
0
0
0.0178
>a=[1 2-1 7 5 % Matrix for (vi)
0-1 2-3 2
1 0 3 1-1
11 1 4 1
0 0 0 0 41;

>> rref(A) Y% part (a)

ans =
1 0 3
0 1 -2
0 0 0
0 0 0
0 0 0

O O W K

0

O O+ OO

>> B = inv(Ad) % This will not exist since there are zero rows.

Warning: Matrix is singular to working precision.

B =
Inf Inf Inf Inf Inf
Inf Inf Inf Int Inf
Inf Inf Inf Inf Inf
Inf Inf Inf Inf Inf
Inf Inf Inf Inf Inf

>> % This is the same warning as in (ii).

3. (a)

>> A = round(10#(2*rand(5)-1))

A=
4 10 0 -5 -6
7 8 2 -2 -7
3 -5 7 1 1
5 -4 -2 -1 6
5 -3 7 -4 -9

>> B = A;

>> B(3,:) = 3%B(1,:) + 5%B(2,:)

B =

= 0l W o
w
»
1
N
w
§
3,
[y
|
w
oo
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>> rref(B)
ans =
1.0000 0 0 0 -6.8037
0 1.0000 0 0 3.2398
0 0 1.0000 0 -4.1014
0 0 (] 1.0000 4.3544
0 0 0 [o] 0
Since the bottom row of the reduced matrix is zero, B will not be invertible.
(b)
>> B= A;
>> B(4,:) = 2%B(2,:) - B(1,:)
B=
1 8 4 -2 -6
0 2 -7 -9 -4
9 7 -8 4 8
-1 -4 -18 -16 -2
1 -6 -10 -5 -7
>> rref(B)
ans =
1.0000 0 0 0 -6.6780
0 1.0000 0 0 3.0199
0 0 1.0000 0 -3.8251
0 0 0 1.0000 4.0906
0 0 0 0 0

Again, the bottom row is zero, so B is not invertible.

(c) Assume that row 7 is a linear combination of the other rows. Since one of the valid operations
in Gaussian Elimination is to add a multiple of one row to another, we may subtract this linear
combination of the other rows from row i. This will leave a matrix with zeros in row i. By rear-
ranging the rows, we may put this zero row at the bottom. After continuing the Gaussian Elimi-
nation, this bottom row will still be zero, so the matrix will be singular.

>> A = round(10*(2*rand(7)-1))

A =
4 2 1 -4 0 9 -3
-2 9 -5 3 -2 -2 -5
-2 1 0 -7 -6 -7 -7
0 -7 -1 3 -9 8 6
-7 10 9 2 8 -8 -1
2 -2 -7 6 -1 -7 -3
7 -7 -6 -5 -7 -9 -1
>> B = A;
>> B(:,3) = 2*B(:,1) - B(:,2)
B =
4 2 6 -4 0 9 -3
-2 9 -13 3 -2 -2 -5
-2 1 -5 -7 -6 -7 -7
0 -7 7 3 -9 8 6
-7 10 -24 2 8 -8 -1
2 -2 6 6 -1 -7 -3
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>> C = A;
>> ¢(:,4) = ¢(:,1)+C(:,2)-¢C(:,3);
>> C(:,6) = 3%C(:,2)

C =
4 2 1 5 0 6 -3
-2 9 -5 12 -2 27 -5
-2 1 0 -1 -6 3 -7
0 -7 -1 -6 -9 -21 6
-7 10 9 -6 8 30 -1
2 -2 -7 7 -1 -6 -3
7 -7 -6 6 -7 -21 -1
>> D = A;
>> D(:,2) = 3%xD(:,1);
>> D(:,4) = 2%D(:,1)-D(:,2)+4*D(:,3);
>> D(:,5) = D(:,2) - 5%D(:,3)
D =
4 12 1 0 7 9 -3
-2 -6 -5 -18 19 -2 -5
-2 -6 0 2 -6 -7 -7
0 0 -1 -4 5 8 6
-7 -21 9 43 -66 -8 -1
2 6 -7 -30 41 -7 -3
7 21 -6 -31 51 -9 -1
>> rref(B)
ans =
1 0 2 0 0 0 0
0 1 -1 0 0 0 0
0 0 (0] 1 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 1
0 0 0 0 0 0 0

>> rref(C)

ans =
1 0 0 1 0 0 0
0 1 0 1 0 3 0]
0 0 1 -1 0 0 0
0 0 0 [0) 1 0 [0)
0 0 0 0 0 0 1
0 0 0 0 0 0 0
(0] 0 0 0 0 0 0

>> rref(D)

ans =
1 3 0 -1 3 0 0
0 0 1 4 -5 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 1
0 0 0 0 0 (o] 0
0 0 0 0 0 0 0
0] 0 0 0 0 0 0

Each rref has a row of zeros so the original matrices are not invertible. So we conjecture any
matrix with some columns equal to linear combinations of other columns will not be invertible.
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(b) Repeat with your own E. (The example E = A; E(:,3) = 3%E(:,2) ;
E(:,4) = 2#E(:,1) + 4*E(:,3) is interesting.)

(c) If column j of A is a linear combination of columns preceeding it, then there will be no pivot in
column j of rref(4), and the non-zero entries in column j of rref(A) may be the coefficients in
the linear combination which represents the jth column. For instance column 4 in rref (D) has
—linrow 1, 4 in row 2 and D(:,4) = —1D(:,1) 4+ 4D(:,2). (However, for the E suggested in (b),
rref(E) will not recover the (2,4) coefficients for column 4 since column 3 will not be a pivot
column.)

(d) This is the converse of Problem 5, Section 1.7. There we saw that if column j of rref(A) had
no pivot, then column j of A is a linear combination of the preceding (pivot) columns of A with
coefficients given by the entries in column j of rref(A).

5. (a) (i)

>> A = triu( round(10*(2*rand(5)-1)) );
> A(2,2) =0

A =
1 -1 -1 -7 5
0 0 6 3 5
0 0 =3 2 -4
0 0 o0 -10 =2
0 0 0 0 4

>> rref(A) Y part (i)

ans =
1 -1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 i
0 0 0 0 0

Since the bottom row is zero, 4 is not invertible. This can be repeated 4 more times. In general,
if A is upper triangular, and there is a zero on the diagonal, A will not be invertible. However, if
there is not a zero, it will be invertible:

>> A = triu( round(10*(2*rand(5)-1)) )

A=
-6 -2 10 3 3
0 2 -5 4 3
0 0 -5 6 -9
0 0 0 4 2
0 0 0 0 -5
>> rref(A)
ans =
1 0 0 0 0
0 1 0 0 (o]
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

This matrix is invertible.
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(ii)

>> B = inv(A) Y% part (ii)
B =
-0.1667 -0.1667 -0.1667 0.5417 0.3167
0 0.5000 ~0.5000 0.2500 1.3000

0 0 -0.2000 0.3000 0.4800
0 0 0 0.2500 0.1000
0 0 0 0 -0.2000

The inverse of an upper triangular matrix is also upper triangular. Also, if the diagonal en-
tries of A are a;; then the diagonal entries of A~! will be 1/a;;. Since one of the diagonal
entries in (i) was 0, the matrix will not be invertible since 1/0 is not defined.

(iii) Part (iii): To reduce the matrix [A I] to echelon form, we would divide row one by a, row
two by d, and row three by f. After this step, we would have 1/a, 1/d, and 1/f on the diag-
onal of the right hand side. We would then add multiples of row three to rows one and two,
which will not change the diagonal on the right. Finally, we would add a multiple of row two
to row one, which again will not change the diagonal on the right. This will leave the I on
the left, and A~! on the right. As predicted in (ii) the diagonal entries of A~ are the in-
verses of those in A. Also, as predicted in (i), the first step of this process will fail if a, d, or
[ is zero. (See the solution to Problem 29.)

(b)
> A =[123;456; 78 9];
>> rref(d)
ans =
i 0 -1
0 1 2
0 0 0

A is not invertible.

>B=10[1234; 5678;9 10 11 12; 13 14 15 16];

>> rref(B)

ans =
1 0 -1 -2
0 1 2 3
0 0 0 0
0 0 0 0

B is also not invertible. In general, a matrix of this form will not be invertible. If C' = (¢;;) is an
n X n matrix with ¢;; = j+ (i — 1)n, then c3;j = 2* €yj — 1 % ¢1j. This means that the third row is
2 times the second row minus the first row.

(c) The assertion that there is a unique nth degree polynomial that fits n + 1 points is the same as
saying that the coefficient matrix is invertible.

>> x = 2*rand(5,1)-1
x:

-0.2330

0.0388

0.6619

-0.9309

-0.8931



The Inverse of a Square Matrix MATLAB 1.8 107

>> V= vander(x)

V =
0.0029 -0.0126 0.0543 -0.2330 1.0000
0.0000 0.0001 0.0015 0.0388 1.0000
0.1920 0.2900 0.4382 0.6619 1.0000
0.7508 -0.8066 0.8665 -0.9309 1.0000
0.6361 -0.7123 0.7976 -0.8931 1.0000
>> inv(V)
ans =
8.9238 -6.5334 0.7240 24.5579 -27.6723
10.0230 -9.1141 1.4612 10.4447 -12.8147
-3.7580 0.6876 0.8518 -13.6375 15.8561
-4.7803 4.1676 0.1049 -2.8701 3.3779
0.1907 0.8377 -0.0054 0.1314 -0.1543

This may be repeated several times. As long as the points in x are distinct, the Vandermonde
matrix V will be invertible.

6. (a) Enter A1, A2, ... A5. Then

>> rref(Al)
ans =

© O O O =
© O O - O
O O OO0
© = O OO
- O O O O

We see Al is invertible. The same result will come from rref(A3) and rref (A4), so both A3
and A4 are invertible.

>> rref(A2)

ans =
1 0 3 1 0
0 1 -2 3 0
0 0 0 0 1
0 0 0 0 0
0 0 0 0 0

>> rref(A5)

ans =
1 -2 0 0 1
0 0 1 0 -2
0 0 0 1 1
0 0 0 0 0
0 0 0 0 0

Both A2 and A5 are not invertible.

>> rref (A1*A2)

ans =
1 0 3 1 0
0 1 -2 3 0
0 0 0 0 1
0 0 0 0 0
0 0 0 0 0
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>> rref (A1*A3)

ans =
1 0 0 0 0
0 1 0 0 0
(0] 0 1 0 0
0 0 0 1 0
0 0 0 0] 1

Al- A2 is not invertible, and Al- A3 is invertible. From the list given Al- A3, Al- A4, and A3- A4
are invertible, while the others are not:

>> rref (A1*A5)

ans =
1 -2 0 0 1
0 0 1 0 -2
0 0 0 1 1
0 0 0 0 0
0 0 0 0 0
>> rref(A2*A3)
ans =
1 -2 0 0 1
0 0 1 0 -2
0 0 0 1 1
0 0 0 0 0
0 0 0 0 0
>> rref (A2*A4)
ans =
1.0000 0 1.2857 -0.0621 0
0 1.0000 0.2857 0.8509 0
0 0 0 0 1.0000
0 0 0 0 0
0 0 0 0 0
>> rref (A2*A5)
ans =
1 -2 0 0 1
0 0 1 0 -2
0 0 0 1 1
0 0 0 0 0
0 0 0 0 0
>> rref (A3*A5)
ans =
i -2 0 0 1
(] 0 1 0 -2
0 0 0 1 1
0 0 0 0 0
0 0 0 0 0
>> rref(A4*A5)
ans =
1 -2 0 0 1
0 0 1 0 -2
0 0 0 1 1
0 0 0 0 0
(] 0 0 0 0
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A product of two matrices will be invertible only if both of the original two matrices are invert-
ible. In the above, since A2 and A5 were not invertible, any product involving either of these is

not invertible.
(b) For Al - A3:

>> inv(A1*43) - inv(A1)*inv(A3)
ans =
4.8095 -20.8571 ~-3.3810 -15.8571 8.0857
16.5833 -7.8690 16.5238 -4.7976  0.7357
1.0238 13.0238  7.0476 10.0238 -5.7357
-5.8452 -4.7024 -9.1190 -3.9881 2.9500
0 0 0 0 0

>> inv(A1*A3) - inv(A3)*inv(Al)
ans =
1.0e-14 *
-0.0444 0 0.2665 0 0.0888
0 0.17786 -0.0333 0.0888 -0.1332
0.1332 -0.1776 -0.2665 -0.3553 -0.2665
-0.1554 0.1776 0.1332 0.1776 0.0888
0 0 0 0 0

The second result is 0 to within round off error. Similarly:

>> inv(A1*A4) - inv(A1)*inv(A4)
ans =
~16.3571 13.5714 3.8571 10.4286 6.4286
3.0000 9.5714 9.5000 18.3571 -14.1786
-9.7143 9.2857 6.7143 8.5714 0.7500
1.5000 -1.6429 -1.5000 -0.7143 -1.3929
0.7857 -1.4286 -0.2857 -2.0000 0.7857

>> inv(A1*44) - inv(A4)*inv(Al)

ans =
1.0e-13 *

0.0089 -0.3730 0.2087 -0.6040 0.3730
-0.1066 -0.0355 0.3908 -0.1243 0.1599
-0.0488 -0.0355 0.2309 -0.1599 0.1332

0.0156 -0.0644 -0.0266 -0.0822 0.0389

0.0006 0.0600 -0.0377 0.0977 -0.0622

>> inv(A3*A4) - inv(A3)*inv(A4)
ans =
~74.6667 223.3333 -265.0000 117.6667 -63.7333
-531.2333 320.8333 -435.5000 214.5000 -48.5667
-435.0667 153.6667 -228.0000 119.0000 -1.9333
158.9667 -20.3333 38.0000 -22.1667 -16.2667
33.6000 -22.6667 30.0000 -14.6667 4.0000

>> inv(A3*A4) - inv(A4)*inv(A3)

ans =
1.0e-11 *
-0.1478 0.0284 -0.2160 0.1180 ~-0.0142
0.0284 -0.1364 -0.1307 0.0796 0.0092
-0.0114 -0.0625 -0.0966 0.0554 0.0014
0.0014 0.0135 0.0199 -0.0117 -0.0001
0.0092 0.0025 0.0181 -0.0107 0.0006
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From these, we may conjecture that

In fact, this will be true: see theorem 3 in this section.

7.
>> A =
>> rref(a)
ans =
1 (] -1
1 2
0 0 (]

(AB)"'=B'A7' =0

[123; 4586; 7 89];

or

Since the bottom row is all zeros, A isn’t invertible.

(a)

(b)

(c) The
(d)

>> format short e
C = A; C(3,3) = A(3,3) + £;

> f = 1.e-5;
>> inv(C)
ans =
9.9998e+04 -2.0000e+05
-2.0000e+05 4.0000e+05
1.0000e+056 ~2.0000e+05
> f = 1.e-7;
>> inv(C)
ans =
1.0000e+07 -2.0000e+07
-2.0000e+07 4.0000e+07
1.0000e+07 -2.0000e+07
> f = 1.e-10;
>> inv(C)
ans =
1.0000e+10 -2.0000e+10
-2.0000e+10 4.0000e+10
1.0000e+10 -2.0000e+10
entries in C~! are roughly the same size as 1/f.
> x = [1;1;1];
>> f = 1.e-5;
> y = inv(C) * b
y -
1.0000e+00
1.0000e+00
1.0000e+00
>> z = x-y
z -
0
0

4.6566e-10

C = A; C(3,3) = A(3,3) + £;

1.0000e+05
=2.0000e+05
1.0000e+05

1.0000e+07
-2.0000e+07
1.0000e+07

Instructor’'s Manual

(AB)~' = B-14-!.

% Use scientific notation.

C = A; C(3,3) = A(3,3) + £;

1.0000e+10
-2.0000e+10
1.0000e+10

C = 4; C(3,3) = A(3,3) + £; b = [6; 15; 24+f];
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> f = 1.e-7; C = A; C(3,3) = A(3,3) + £; b = [6; 15; 24+f];
inv(C) * b

N4
v
«
1]

1.0000e+00
1.0000e+00
1.0000e+00

>> z = x-y

(0]
~-5.9605e-08
-5.9605e-08

>> f = 1.e-10; C = A; C(3,3) = A(3,3) + £; b = [6; 15; 24+f];
>>y = inv(C) * b

9.9997e-01
1.0001e+00
9.9997e-01

>>z = x-y
3.0518e-05

-6.1035e-05
3.0518e-05

>> format % Return to standard format for the next problem.

As f gets smaller, the error term z becomes larger. This means that the closer C is to a nonin-
vertible matrix, the more error there is in the computation of C~1. In fact the sum of the ex-
ponents in f and z is always -15. This is related to the fact that there are about 15 significant
digits in MATLAB’s internal computations.

8. (a) Problem 37:

>> A =[0.293 0.014 0.044; 0 0.207 0.010; O 0.017 0.216];
>> L = eye(3) -A Y% This is the Leontief matrix.
L =

7.0700e-01 -1.4000e-02 -4.4000e-02
0 7.9300e-01 -1.0000e-02
0 -1.7000e-02 7.8400e-01

>> x = inv(L) * [ 13216; 17597; 1786]
x =

1.0e+04 =*

1.9305

2.2225

0.2760

Israel needs 19,305 pounds for Agriculture, 22,225 for Manufacturing, and 2,760 for Energy to
export the given amounts.
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(b)

>A=1[.2.1.3; .15 .25 .25; .1 .05 0];
>> L = eye(3) - A
>> format long
>> x = inv(L) #* [300000; 200000; 200000]
X =
1.0e+05 *
5.37197626654496
4.66453674121406
2.77042446371520
>> format

This is the same answer as the one to 9(b) in Section 1.3.

9. If we arrange the message as a sequence of rows, then we need to multiply each row by the encoding
matrix. Since these are rows, and not columns, the encoding matrix must be on the right.
Write M for the message and C for the coded message. If encoding the message is done by multiply-
ing by A then C = M - A. Multiplying C by A~! will decode the message because

C-A'=(M-A) - A't'=M-(A-AY=M-I=M.

>A=[12-345;-2-58-8-9;12-279;110612; 24 -6 8 11]
>> C = [47 49 -19 257 487
10 -9 63 137 236
79 142 -184 372 536
59 70 -40 332 588];
>> M = round(C * inv(4)) % use round to get rid of any small error term.
M=
1 18 5 27 25
15 21 27 8 1
22 9 14 7 27

6 21 14 27 27
>>setstr(M + 'A’ - 1) % setstr(1:27 + 'A’ - 1) is ’ABC...XYZ[’

ans = % So given command prints the message
ARELY % but with '[’ instead of ’ .

OU[HA

VING[

FUNLCL

The message decodes to “ARE YOU HAVING FUN”.
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Section 1.9

1.

5.

8.

11.

12.

13.

14.

15.

16.

21
—16) (31) (2—11)
2. 3. 4. | -15
( 45 02 3 24 06
10

1-11 12 3 0
2 05 6. [2 4-5 7%
3 45 3-5 17 o1
adyg 00

(_fié;) 9. [beh 10. {00
cfj 00

a1l ayg - Gy bir b1z - bim
as azz - Am bay b2z - bom
Let A = ) ] .| and B = .. .
Gn1 Gp2 *** Gpm bn1 b2 - bpm

a1 +bi1 az+bda -0 any + by

aya+b12 aza+b22 - anz+bn2

Then (A + B)t = = A'+ B!

@1m + bim G2m +bam - Anm + b
a=5 =3

a;; = aj; and b,‘j = bj,' forl <i<nandl < j < n. Then, a;; + b,‘j = aj; + bjb,'. Thus, A + B is
symmetric.

Since A is symmetric, ajz = axj for 1 < j < n,1 <k < n. And since B is symmetric, bg; = b; for

1<i<n, 1<k<n. Therefore, Y ajkbii = »_birar;. Thus, (AB)! = BA.
k=1 k=1

Suppose A is m x n. Then A*is n x m. Then AA! is defined and is an m x m matrix. Note that
n

n
Za,-kajk = Zﬂjkﬂik- That is, the ij** component of AA* is equal to the ji'* component of AA?.
k=1 k=1

Thus, AA* is symemtric. Another proof is that (AA4")! = (A!)!A* = AA? so AA! is equal to its own
transpose, hence is symmetric.

If i = j then clearly a;; = aj;. If i # j then a;; = 0 and aj; = 0. Thus, a;; = aj;. Thus, Ais
symmetric.
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17.

18.

19.

20.

21.

22.

23.

24.

25.

Uiy U122 - Uln
0 Uoo et U
Let U = . " | be upper triangular.
0 0---0upp
Uy 0 ... 0
U2 U22 0---0 . .
Then Ut = ) . | is lower triangular.
Uln U2n -+ 0

(a) No  (b) Yes (c) No  (d) Yes

A* = —Aand B' = —B. Then (A+ B)! = A+ B'* = —A - B = —(A+ B). Thus, A+ Bis
skew-symmetric.

Al = —A4. a;; = —aj;. Elements on the main diagonal are of the form a;;. ai; = —a;;. It follows that
a;; = 0

(AB)t = B*A' = (-B)(—A) = BA. AB is symmetric if and only if (AB)! = AB. But (AB)' = BA.
Thus AB is symmetric if and only if A and B commute.

The ij** component of (A+ A*)/2 = (aij +a;;)/2 and the ji** component of (4+ A%)/2 = (aj; 4 a;;)/2.
Thus (A + A*)/2 is symmetric.

The ij** component of (A — A')/2 = (a;j — a;j;)/2 and the ji** component is (aj; — a;;)/2 = —(ai; —
a;;)/2. Thus (A — A')/2 is skew-symmetric.

Let A, B, and C be n x n matrices. Suppose A = B + C where B is symmetric and C is skew-
symmetric. Then a;; = b;; + ¢;; and aj; = bj; + ¢;i. But b;; = bj; and ¢j; = —c;;.
Then b;; + ¢ij = aj;
bij —cij = aj;
Then b;; = (aij + @ji)/2 and ¢;j; = (aij — aj;)/2. Note that these solutions are unique. Thus, any

square matrix can be written in a unique way as the sum of the symmetric matrix (4 + A*)/2 and the
skew-symmetric matrix (A — a*)/2. (This uses the results of Problems 22 and 23.)

AAY = (a“ a12) (a“ (121) = ( aiy +ai; anaz +012022) = (1 0). Thus A is invertible

2 2
az) azs aip az ai1az; + aizas; ay; + aj,y 01
and A~ = At

(7738 =y

=
f
VN
N =
=S
N
S
|
|
|
DO | =
VN
|
WL
|
— N
N——
—~
=
N
Bl
—
]
|
(5] [
~/~
N W
|
-
N—
Il
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30 0 1/3 -1/3 -1/3 1/3 0 0
28. Al = (2 2 0) A"l = ( 0 1/2 1) (A~1)t = (—1/3 1/2 0) = (41!
12 -1 0 0 -1 ~-1/3 1-1

105 13/8 —15/8 5/4
29. At = (1 2 5) (A~1)t = (—1/2 1/2 0| =(4H)?
131 ~1/8 3/8 -1/4
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MATLAB 1.9
1.

>> A = round( 5*(2*rand(4,3)-1))

A=
-3 4 -5
-5 -1 -4
2 0] 0
2 3 2

>> B = round( 5*(2*rand(3,2)-1))

B =
-5 -1
-1 2
-4 1

>> (A*B)’ - A’ * B’
??? Error using ==> *
Inner matrix dimensions must agree.

>> (A*B)’ - B’ * A’
ans =
0 0 0 0
0 0 0 0

It is possible that A’B? is not always defined. However (AB)' is always the same as B'A*.

2.
>> A =1[123; 254; 1 -110]; Y% This was invertible.
>> inv(A’)
ans =
54.0000 -16.0000 -7.0000
-23.0000 7.0000 3.0000
-7.0000 2.0000 1.0000
>> inv(a)’
ans =
54.0000 -16.0000 -7.0000
~23.0000 7.0000 3.0000
-7.0000 2.0000 1.0000
This should be repeated for each of the other matrices. In each case A? is invertible if and only if A4 is
invertible. Also, (A%)~! = (A~1).
3. (a)
>> A = round( 10*#(2*rand(4) -1) )
A=
9 3 5 -3
7 -2 -5 3
1 4 -9 5



The

> B = 4"+ A

B =
18 10 6 -11
10 ~4 -1 11
6 -1 -18 10
-11 11 10 20

For any matrix A, B will be symmetric.

(b)

> C = A" - A

C =
0 4 -4 -5
-4 0 9 5
4 -9 0 0
5 =5 0 o]

For any A, C will be antisymmetric: C* = —C.

()

>> G = A*A’ Y For the matrix above.
G =
124 23 -39 -53
23 87 59 -67
-39 59 123 29
-53 -67 29 2563

>> A = round( 10*(2*rand(3,4) -1) )

A =
-3 4 -9 -5
=5 5 3 -1
10 3 8 5
>> G = A*pA?
G =
131 13 -115
13 60 -16
-115 -16 198

For any matrix A, G will be symmetric.

d) If the ¢j entry of A is a;; then the ij entry of A’ is a;;. The ij entry of B is b;; = a;; + a;; which
j j J {] j

is the same as bj; = aj; + aij, so B is symmetric.
The ij entry of C is a;; — a;;, while the ij entry

The ij entry of G will be g;; = )", airajr. The ji entry of G will be 3, ajrair which is the same

as g;;. Hence G is symmetric.

Transpose of a Matrix MATLAB 1.9

% A non-square matrix.

of Ct is aj; — @5 = —Cij, SO Ct =-C.

4. (a) In problem 2 from section 1.7, it was shown that the solution of Ax = 0 produces all vectors x

that are perpendicular to the rows of A. Since the columns of A are the same as the rows of A?, the

solution of A*x = 0 will produces all vectors x that are perpendicular to the colums of A.

(b) (1)
>A=[201;021; 111; -111; 111];
>> rref(A?)
ans =
1.0000 0 0.5000 0 0.5000
0 1.0000 0.5000 0 0.5000
0 0 0 1.0000 0
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The solutions have z3 and z5 arbitrary, and 3 = —.5z3—.5z5, 2 = —.5zx3—.5x5, and z4 = 0.

(ii)

> A=[245;057;780;704; 91 1];
>> rref(A?)

ans =
1.0000 0 0 5.8462 5.3846
0 1.0000 0 -3.6044 -3.7033
0 0 1.0000 -0.6703 -0.2527

The solutions have ¢4 and z5 arbitrary, and z; = —5.8462z4 — 5.3846z5, o = 3.6044z4 +
3.7033z5, and z3 = .6703z4 + .2527xs5.

(1i1)

>> A = rand(5,3)

A=
0.2661 0.3841 0.9410
0.0907 0.2771 0.0501
0.9478 0.9138 0.7615
0.0737 0.5297 0.7702
0.5007 0.4644 0.8278

>> rref(A?)

ans =
1.0000 0 0 1.0319 0.5701
0 1.0000 0 1.7249 -0.4801
0 0 1.0000 -0.3771 0.4142

The solutions have x4 and z5 arbitrary, and £; = —1.031924 — 0.5701zs5, x5 = —1.7249z4 +
0.4801zs, and z3 = 0.3771x4 — 0.4142zs.

5.
>> A = 2*rand(4)-1
A=
-0.7493 0.2591 0.7771 0.0265
-0.9683 0.4724 -0.5336 0.1822
0.3769 0.4508 -0.3874 0.6920
0.7365 0.9989 -0.2980 -0.1758

>> Q = orth(A)

Q:
0.5071 0.2864 0.7859 -0.2077
0.6553 0.4839 -0.5678 0.1184
-0.2551 0.3366 -0.1922 -0.8858
-0.4984 0.7553 0.1515 0.3977
(a)
>> x = 2*rand(4,1)-1
x:
0.6830
-0.4614
-0.1692

0.0746
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>> y = 2*rand(4,1)-1
y:

-0.0642

-0.4256

-0.6433

-0.6926

>> s = x’ * y Y% The scalar product of x and y.
s =
0.2097

> r = ( Q*x )* =* (Q*y) % The scalar product of Qx and Qy.
s =
0.2097

>> format short e
>> s-r
ans =

5.5511e-17

Since @ is orthogonal, x - y is the same as (@x) - (Qy).

(b) If the above steps are repeated, even if A is complex, the inner product of x and y will always be
the same as that of Qx and Qy. (For complex A this depends on the fact that A’ = (A)!. Also
you should reverse the x,y variables as x -y = y’ * x for complex vectors.)

(c)

> x = Q(:,1); vy =Q(:,2); % Let x be the ist column, and y the 2nd.
>> sqrt(x’ * x) Y% the length of the 1st column.
ans =

1.0000

>> x’ * y Y% The inner product of the 1st and 2nd column.
ans =
5.5511e-17

This is zero up to round off and the same results follow for all the other columns.

(d)

>> inv(Q)
ans =
0.5071 0.6553 -0.2551 -0.4984
0.2864 0.4839 0.3366 0.7553
0.7859 -0.5678 -0.1923 0.1515
-0.2078 0.1184 -0.8858 0.3976

Q! and @’ are the same for any orthogonal matrix.
(¢) To show that x -y = Qx - Qy, we will use Q=! = Q. (If Q is complex replace * with ’.)

Qx-Qy = (Qx)'Qy =x'Q'Qy =x'Q 'Qy =x'Iy =x'y =x -y.

The ith column of Q is Qe; where e; is a vector with a 1 in the ith position and zeros elsewhere.
This means that the inner product of the ith column of @ with the jth column can be written as
Qe; - Qe;. Using (b) we have that Qe; - Qe; = e; -ej, whichis 1 if ¢ = j and is 0 if i # j. The
statement in (c) follows immediately.
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Section 1.10

1.

11.

12.

13.

21.

25.

29.

33.

37.

Ry R5 is an elementary matrix 2. Ry + R, is an elementary matrix

. Since two operations Ry = Rz, Ry — Ry + R; are needed, this is not an elementary matrix
. 2R3 is an elementary matrix
. Two operations needed: R; — 3R;, Ry — 3R, so not an elementary matrix

. Ry Z Ry is an elementary matrix

Two operations, By = R3, Ry 2R3, so not an elementary matrix

Two operations needed, Ry — Ry + 2R;, R3 — R3 + 3R;, so not an elementary matrix
R + 2R; is an elementary matrix 10. R4+ R3 is an elementary matrix

Two operations needed. Ry — Ry + R;, R4 — R4 + Rj3, so not an elementary matrix

R; — R» is an elementary matrix

R
(s10) o faor) e (
be) = (a) br) o),
i) w(ai) () = ()
( ( (
( ( (
| ( (

23.

100 120
010) 30, (o1o> 31, ?é) 39,

001
(010 120

31/2) 34. {100 35. [010 36.
001

10-10

1 00
0—~20) 38. 01 00 39. 40.

10
\00 01
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Fa = gk 11/2 fam2fe g
R2—->R2—3R1 (0 1/2) Rl—PRl—%RQ <0 1)

1) (1) (312) G 2)

Rz — Rz — 5R;

111 10-1/2 SURCAIITY

R, — 1R - R; - R; —1.5R
43. (023 2=t g g | TG0
551) Pi-Ri-Re{gg _4) FioFRit05Rs| g0

100 100 110 10 0 10-1/2 10 0
A=1010 020 010 01 0 01 0 013/2
501 001 001 00 —4 00 1 00 1

32 1 I sy TR 00
R, — 0.5R - R, > R, - R

4. (02 2 20 o1 1] PTETR g0
00 —1 Ry — Ry - $Ry 00 —1 Ry - R+ 3Rs

001
300 100 12/30 10 0 100 10-1/3
A=1010 020 01 0 011 01 0
001 001 00-1 001 00 1

0-1 0 = 1 100
R, — R. R
45 [0 1-1 R3—>R3+R2 01—1 2t 10
1 0 1 00-1) Fi—Fi-

001
001\ /1 00\ /10 0\ /101\ /10 0
A={o010]){o 10| {01 o)[o10][01=1
100/ \o-11/ \oo-1/\oo1/ \oo 1

2 04 e gy iR 100

46. [0 11| B~ fe-3R(yy | RemR-Rf 1)

3-11) - RetRa\gg_4) PioRi-2R )

200 100 1 00 10 0 100 102
A=1010 010 0 10 01 0 011 010
001 301 0-11 00—4 001 001
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2000 1000 10 00 1000
0100 0300 01 00 0100

- 4=109010) loo10f|o00-40]) {0010
0001/ \ooo01/ \oo 01/ \o005
2100 By —05R  ,10-1/40 R — 0.5R;
48 (0210 R, —»05R, |01 1/20| R:—R;—05Rs
10021 Ry — R —~05R, {100 21 Ri—Ri+1iR;
0002 00 02
Ry — 0.5R,
100 1/8\ g L r —osr, (1000
010-1/4) " " er | 0100
001 1/2 PTImRTESTI 0010

000 2/ R-Ri-3R \ggo1

[ Y

2000 1000 11/200 1000 10 00
0100 0200 0 100 0100 011/20
0010 0010 0 0160 0020 00 10
0001 0001 0 001 0001 00 01

10-1/40
01 00
00 10
00 01
1000y /100 O\ /100 0\ ,1001/8
4 [0100) (o010 o) fo10-1/4) 010 O

0010 0011/2 001 0 001 O
0002 000 1 000 1 000 1

49. ac # 0 implies a # 0 and ¢ # 0. Row reducing A to I, by back elimination via

ab o a0\ a'Ri (10
a"IRy
(oc) P = b (01) (01)
shows I, = (a7 ! R1)(Ry — bR2)(c™1R3)A. So solving for A gives A = (cR3)(R1 + bR2)(aR;), or
a4=(@ by (190 1% al
“\0c/ T \O¢c 01 01
_(1b al
T \0¢ 01

50. adf # 0 implies a, d and f are nonzero. Row reducing A to I3 by back elimination gives
f71Ry

abec abl d71R, a0

- - eR, =1
ode| 2P Bs Lha0) R wRi—em, |010 o R I
00f) Fr—Ri-chs \ 9oy . 001/ —
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52

53.

54

55

56

57.

J
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So taking all the inverse operations applied to I3 (in the opposite order) shows

10¢
010
001

a0
010
001

h N
i

(

100
010
00f

10 ¢
0le
00f

I

100
0le
001

150
0d0
001

100

0d0
001

)

150
010
001

)

al0
010
001

|

. Let U = (u]R1)(uzs R2)---(u;}Rn)A. Then U is an n x n matrix with 1’s down the diagonal
and 0’s below it. Note that U is row equivalent to I and hence, by theorem 4, can be written as a
product of elementary matrices. If U = E|E;--- Ey, where each E; is an elementary matrix, then
A = (upnRy) - (u22R2)(u11 R1)ELE; - - - Ej. By theorem 4, A is invertible.

. By problem 51, A is invertible. As in problem 51, let U = (u}'R1)(uz5 Rz) - - - (uy ) Rn)A. Since U
has 1’s down the diagonal and 0’s below it, when row reducing U to I we need only add multiples

of a row to those rows above it. Hence, we can write U as a product of upper triangular elementary

matrices: U = E;FEj---Ej. Note that E;! is upper triangular for each i. Show that the product

of two upper triangular matrices is upper triangular. Then deduce A~! = E;'-.. E; B (u]

u_le -+-(uz}R,) is upper triangular.
22 nn

n n
. PjjA = C where ¢;; = Ep,kak,. If r = ¢, then ¢;5 = Zp,—kak, = aj, since pijxp is 1 if k = jand 0

otherwise. If r = j, then ¢j; = a;, since pji is 1 if & = 7 and 0 otherwise. If » # 7 and r # j, then
¢rs = ay5. Hence, P;; A is the matrix obtained by permuting the i** and j'* rows.

. AijA = B where b,, = Za'rkak,. If r # j, then b,, = a,, since a,, is 1 if k = r and 0 otherwise. If

n
r = j, then b;, = E a;-,cak, = cais; + aj, since a;-k iscifk =14 1ifk=j and 0 otherwise. Hence,

k=1

k=1

k=1

k=1

-1

Ry)

At is upper triangular, so (A?)~! is upper triangular by the result of problem 52. But (A4")~! = (A~1),
so (A™1)! is upper triangular, which means that A=! = [(A~!)*]* is lower triangular.

A;; A is the matrix obtained from A by multiplying the i** row by ¢ and adding it to the j** row.

. M;A = B where b, = Zmrkak,. If r = 4, then b;; = ca;, since my;; 1s ¢ if k = ¢ and 0 otherwise.

(

12
24

)

R2 —>R2—2R1

m

k=1
If » # 1, then b, = a,; since my; is 1 ifk = rand 0 otherwise. It follows that M;A is the matrix
obtained from A by multiplying the i** row by c.

(

12
00

)

o~

10
21

)(

12
00

)
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93 9 -3 10) /2 -3
58. (—4 6)'*(0 0) A"<—21><0 0)
00 10 01\ /10
59. (10)'“ (00) 'A"(lo) <00>
1—12 1-12
60. 0 30
—18 0 00
100\ /100\ /100\ /1-12
210 ) {o10]|[o10] (0 30
001/ \401/ \o11/ \o o0
1-33 1 -3
61. | 0 3 1 0 1 -1/3
1 0 0
100\ /1 100\ /1-3 3
010 o= oto) o 1-1/3
101/ \o 031/ \o 0o o0
100 100
62. [ 230] = (o010
140 000

100 100 100 100 100
210 010 030 010 010
001 -101 001 041 000

Instructor’s Manual



MATLAB 1.10

1. (a)

Elementary Matrices and Matrix Inverses

>> A = round(10 * (2*rand(4)-1))

A=
-6
-9
4
4
(@)
(i)
(iii)

(b)

>> F=eye(4); F(3,3)

9 -9 -10
-2 -9 -2
0 1 -9
7 -2
>> F=eye(4); F(3,3) = 4;
>> F*A
ans =
-6 9 -9 -10
-9 -2 -9 -2
16 0 4 -36
4 7 3 -2

>> F=eye(4); F(1,2) = -3;
>> F*A

ans =
21 15 18 -4
-9 -2 -9 -2
4 0 1 -9
4 7 3 =2

>> F=eye(4); F([1 41,:) = F([4,1],:);

>> F*A

ans =
4 7 3 -2
-9 -2 -9 -2
4 0 1 -9
-6 9 -9 -10

>> inv(F) %
ans =
1.0000 0 0
0 1.0000 0
0 0 0.2500

0 0 0

4; Y% Part (i):
This is R3 —-> 1/4 R3, i.e. divide R3 by 4.

MATLAB 1.10

% R3 --> 4 R3, i.e. multiply R3 by 4

% R1 --> R1 - 3 R2, i.e. subtract 3R2 from R1

% interchange 1 and 4.

R3 --> 4 R3

0
0
0
1.0000
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(i)
>> F=eye(4); F(1,2) = -3; % R1 --> R1 - 3 R2,
>> inv(F) % This is R1 --> R1 + 3 R2, i.e. add 3R2 to R1.
ans =
1 3 0 0
0 1 0 0
0 0 1 0
0 0 0 1
>> F=eye(4); F([1 4],:) = F([4,1],:); % Part (iii): interchange 1 and 4.
>> inv(F) % This also interchanges 1 and 4.
ans =
0 0 0 1
0 1 0 0
0 0 1 0
1 0 0 0
In each case, the inverse of F' represents a row operation that is the reverse of the original
operation.
2. (a)
> A=[723; -104; 211]
A=
7 2 3
-1 0 4
2 1 1
>> B = A; % Store this matrix in B.
>> ¢ = -B(2,1)/B(1,1); % Compute the multiplier to eliminate B(2,1).
>> F1 = eye(3); F1(2,1) = c; % Generate the elementary matrix which
% subtracts c*row 1 from row 2.
>> B = F1*B; % Apply the matrix F1 to B.
>> F = Fi1; % F will be the product of the elemetary matrices.
>> ¢ = -B(3,1)/B(1,1); % Compute the multiplier to eliminate B(3,1).
>> F2 = eye(3); F2(3,1) = c; % Form elementary matrix for R3-cRl
>> B = F2*B % Finish column 1 elimination
B =
7.0000 2.0000 3.0000
0 0.2857 4.4286
0 0.4286 0.1429
>> F = F2*F; % F accumulates the product of Fi’s.
>> ¢ = -B(3,2)/B(2,2); % Next, eliminate B(3,2) in column 2.
>> F3 = eye(3); F3(3,2) = ¢; % This will finish forward elimination
>> B = F3*B % Apply the matrix to B.
B =
7.0000 2.0000 3.0000
0 0.2857 4.4286
0 0 -6.5000
>> F = F3x%F; % Keep track of F.
> ¢ = 1/B(3,3); % Start backelimination, divide row 3 by B(3,3).
>> F4 = eye(3); F4(3,3) = c;
>> B = F4%B; % Normalize R3 to start with 1.

>> F = F4*F; % Keep track of F.
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>> ¢ = -B(2,3)/B(3,3); % Now backeliminate B(2,3).
>> F5 = eye(3); F5(2,3) = c;
>> B = FB#*B; % Apply the matrix to B.
>> F = F5%F; % Keep track of F.
>> ¢ = -B(1,3)/B(3,3); % Next, backeliminate B(1,3) to finish column 3.
>> F6 = eye(3); F6(1,3) = c;
>> B = F6*B % Apply the matrix to B.
B =

7.0000 2.0000 0

0 0.2857 0
0 0 1.0000

>> F = F6+F; % Keep track of F.
>> ¢ = 1/B(2,2); % Next, divide row 2 by B(2,2).
>> FT7 = eye(3); F7(2,2) = ¢;
>> B = F7+B % Normalize row 2 to start with 1.
B =

7 2 0

0 1 0

0 0 1
>> F = F7xF; % Keep track of F.
>> ¢ = -B(1,2)/B(2,2); % Next, backeliminate B(1,2).
>> F8 = eye(3); F8(1,2) = c;
>> B = F8*B % Apply the matrix to B, finish column 2.
B =

7 0 0

[0] 1 0

(o] 0 1
>> F = F8%*F; % Keep track of F.

=

>> ¢ = 1/B(1,1); Finish by dividing row 1 by B(1,1).
>> F9 = eye(3); F9(1,1) = c;

>> B = F9*B Normalizing R1 gives rref(4)

SR

B =

1 0 0

0 1 0

(o] 0 1
>> F = FO9*F % Form the final product of Fi’s.
F =

0.3077 -0.0769 -0.6154
-0.6923 -0.0769 2.3846
0.0769 0.2308 -0.1538

(b)
>> F=*A
ans =
1.0000 0.0000 0.0000
0.0000 1.0000 0.0000
0 0 1.0000
>> Ax*F
ans =
1.0000 0 0.0000

o] 1.0000 0.0000
0.0000 0.0000 1.0000
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Both FA and AF are the identity, so F = A~!. FA = I3 since F = (F9)(F8)(F7)...(F2)(F1)
and all the steps showing the row echelon form of A is I3 can be achieved by one left multiplica-
tion by F' instead of the individual multiplications by F'1, F2, ....

(c)
>> D = inv(F1)#*inv(F2)*inv(F3)*inv(F4)*inv(F5)*inv(F6)* ...
inv(F7)*inv(F8)*inv(F9)
D =
7.0000 2.0000 3.0000
-1.0000 0 4.0000
2.0000 1.0000 1.0000
D is the inverse of F = A™!, so it is the same as A. (D = F~! since the inverse of a product is
the product of the inverses in the opposite order.)
(d)

>A=[023;114; 24 1];

>> B = A; % Store this matrix in B.
% Since B(1,1) is zero, we must first
% interchange it with another row, so that we
% do not get a divide by zero error. This is
% the only difference between the steps here
% and those in part (a).

>> F1 = eye(3); F1([1,2],:) = F1([2,1],:); % interchange 1 and 2.

>> B = F1#*B % Apply the matrix F1 to B.
B =
1 1 4
0 2 3
2 4 1
>>F = F1; % F will be the product of the elemetary matrices.
>> ¢ = =-B(3,1)/B(1,1); % Compute the multiplier.
>> F2 = eye(3); F2(3,1) = ¢ % R3-cR1 will eliminate B(3,1).
>> B = F2*B % Apply the matrix F2 to B.
B =
1 1 4
0 2 3
0 2 -7
>> F = F2+F; % F is now the product of F2#F1.
>> ¢ = 1/B(1,1); % Next, divide row 1 by B(1,1).
>> F3 = eye(3); F3(1,1) = c;
>> B = F3*B % Apply the matrix to B.
B =
1 1 4
0 2 3
0 2 -7
>> F = F3%F; % Keep track of F.
> ¢ = -B(1,2)/B(2,2); % Next, eliminate B(1,2).

>> F4 = eye(3); F4(1,2) = c;
>> B = F4+B % Apply the matrix to B.



As in (b) and (c), we find that F*A=A*F=I, so F' is the inverse of A, and that D=inv(F1)*inv(F2)

* .., * inv(F9) is the inverse of F, so it is the same as A.

Elementary Matrices and Matrix Inverses

B =
1.0000 0 2.5000
0 2.0000 3.0000
0 2.0000 -7.0000
>> F = F4+F; %
>> ¢ = -B(3,2)/B(2,2); %
>> F6 = eye(3); F5(3,2) = c;
>> B = F5%B %
B =
1.0000 0 2.5000
0 2.0000 3.0000
0 0 -10.0000
>> F = F5%F; %
>> ¢ = 1/B(2,2); %
>> F6 = eye(3); F6(2,2) = c;
>> B = F6%B %
B =
1.0000 (] 2.5000
0 1.0000 1.5000
o] 0 -10.0000
>> F = F6%F; %
>> ¢ = -B(1,3)/B(3,3); %
>> F7 = eye(3); F7(1,3) = c;
>> B = F7*B %
B =
1.0000 0 0
0 1.0000 1.5000
0 0 -10.0000
>> F = F7+F; A
>> ¢ = -B(2,3)/B(3,3); %
>> F8 = eye(3); F8(2,3) = c;
>> B = F8+*B %
B =
1 0
0 1 0
0 -10
>> F = F8*F; %
> ¢ = 1/B(3,3); %
>> F9 = eye(3); F9(3,3) = c;
>> B = F9+#B ’
B =
1 0 0
0 1 0
0 1
>> F = F9*F %
F =
-0.7500 0.5000 0.2500
0.3500 -0.3000 0.1500
0.1000 0.2000 -0.1000

MATLAB 1.10

Keep track of F.
Next, eliminate B(3,2).

Apply the matrix to B.

Keep track of F.
Next, divide row 2 by B(2,2).

Apply the matrix to B.

Keep track of F.
Next, eliminate B(1,3).

Apply the matrix to B.

Keep track of F.
Next, eliminate B(2,3).

Apply the matrix to B.

Keep track of F.
finally, divide row 3 by B(3,3).

Apply the matrix to B.

Look at final form of F.
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3. (a)
>a=0[0123;117; 245)];
>> U = A; % Store A in U; after reduction U will be "echelon" form
>> ¢ = -U(2,1)/U(1,1) % Eliminate U(2,1).
C =

>> F1 = eye(3); F1(2,1)=c

F1 =
1 0 0
-1 1 0
0 0 1
>> U = F1*U % Apply F1 to U, to eliminate.
>> ¢ = ~U(3,1)/U(1,1) % Eliminate U(3,1).
C =
-2
>> F2 = eye(3); F2(3,1) = ¢
F2 =
1 0 0
1 0
-2 0 1
>> U = F2+U % Apply F2 to U.
U =
1 2 3
0 -1 4
0 0 -1

Note: U is now upper triangular.

>> F = F2#F1 % F is the product of the elementary matrices.
F =
1 0
-1 1 0
-2 1
(b)
>> L = inv(F1)#*inv(F2)
L =
1 0 0
1 1
2 0 1

The matrix L is lower triangular. For each of the entries below the diagonal in L, we see that

it is the same value as —c, where ¢ was the multiplier used to eliminate the same entry in A. In
fact the entries are just the entries in the inverses inv(F1), inv(F2). Since we can recover F1, F2
from L (move down column 1 for each successive Fi).
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(c)
>> L*U % This is the same as A.
ans =
1 2 3
1 1 7
2 4 5

Since F is the product of the elementary matrices that reduce A to U, we know that FA = U.
Since L = F~!, we have LU = LFA=F~'FA= A.

(d)
> A =[6273;81014; 107 6 8; 4 8 9 5];
>> U = A; % Store A in U, and work with U.
>> ¢ = -U(2,1)/U(1,1) % Eliminate U(2,1).
c -
-1.3333
>> F1 = eye(4); F1(2,1) = ¢
F1 =
1.0000 0 0 0
-1.3333 1.0000 0 0
0 0 1.0000 0
0 0 0 1.0000
>> U = F1*U;
> ¢ = -U(3,1)/U(1,1) % Eliminate U(3,1).
.
-1.6667
>> F2 = eye(4); F2(3,1) = ¢
F2 =
1.0000 0 0 0
0 1.0000 0 0
-1.6667 0 1.0000 0
0 0 0 1.0000
>> U = F2%U;
>> ¢ = -U(4,1)/U(1,1) % Eliminate U(4,1). This finishes column 1.
c -
-0.6667
>> F3 = eye(4); F3(4,1) = ¢
F3 =
1.0000 (o] 0 0
0 1.0000 0 0
0 0 1.0000 0
-0.6667 0 0 1.0000
>> U = F3*%U
U =

6.0000 2.0000 7.0000 3.0000
0 7.3333 -8.3333 0
0 3.6667 -5.6667 3.0000
0 6.6667 4.3333 3.0000
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>> ¢ = -U(3,2)/U(2,2)
c:
-0.5000
>> F4 = eye(4); F4(3,2)
F4 =
1.0000 0
0 1.0000
0 -0.5000
0 0
>> U = F4xU;
>> ¢ = -U(4,2)/U(2,2)
c:
-0.9091
>> F5 = eye(4); F5(4,2)
F5 =
1.0000 0
0 1.0000
0 0
0 -0.9091
>> U = F5*U
U =
6.0000 2.0000
0 7.3333 -
0 0o -
) 0 1
>> ¢ = -U(4,3)/U(3,3)
C:
7.9394
>> F6 = eye(4); F6(4,3)
F6 =
1.0000 0
0 1.0000
0 0
0 0
>> U = F6*U
U =
6.0000 2.0000
0 7.3333 -
0 0o -
0 0
>> F = F6*F5*F4*F3*F2+F1
F =
1.0000 0
-1.3333 1.0000
-1.0000 -0.5000
-7.3939 -4.8788

>> L = inv(F1)*inv(F2)*inv(F3)*inv(F4)*inv(F5)*inv(F6) % This is the inverse of F.

1}
(¢}

7.0000
8.3333
1.5000
1.9091

1]
(o]

1.0000
7.9394

7.0000
8.3333
1.5000

0
0
1.0000
7.9394

Instructor’s Manual

% Eliminate U(3,2), moving on to column 2.

1.0000

% Eliminate U(4,2), finish column 2.

1.0000

3.0000

0
3.0000
3.0000

% Eliminate U(4,3), moving on to column 3.

1.0000

3.0000
0
3.0000
26.8182

% The product of the F’s

0
0
0
1.0000
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L =
1.0000 0 0 0
1.3333 1.0000 0 0
1.6667 0.5000 1.0000 0

0.6667 0.9091 -7.9394 1.0000

If you print inv(Fi) you see its non-zero entry below diagonal is just the negative of correspond-
ing entry in Fi and is equal to corresponding entry in L.

>> L*U % As in (c), this is the same as A.
ans =

6 2 7 3

8 10 1 4

10 7 6 8

4 8 9 5

As in (b), we see that both L and F are lower triangular, and that LU = A. As in (c), we each
entry in L is the negative of the multiplier used to eliminate the corresponding entry in U, or the
non-zero entries in inv(F1),...,inv(F6).
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Section 1.11

In problems 1-8, the matrix L is constructed from the identity matrix in the following way: For each
row operation on A of the form R; — R;—kR;, put a k in the ¢, j position of the identity matrix.

_(12\ Rz—R2-3R, (1 2\ _ (10

Cam (22) (32) =0 mws= (29)
12 10
2.A_(03)_U.ThusL—(01>.

—15\ Ra—Re+6R (=1 5) _ (10
3.A_< 63) __)( 033)_0. ThusL_(_61).

1 46 1 4 6 1 4 6
R — Rs—3R
4.4 = |o-13| FmfeTlg g g) PRty g g
3 25 3 2 5 —\0-10-13
o [1 46 1 00
R3 — R3 — R 0-9-9]|=U.ThusL=]|2 10].
—\o0 0-3 3'19—01

217 21 7 21 71
5. A= 435 | Fofe-Pify g g FemRe-2Rif 0 o)y
216 00—1 00 -1
0
0
1

) 3 9-2 3 9-2
Ry — Ry - 2R Ry —» Ry — 4R

3 g | ety gy 9| o BemsRil g o) 19

5 4 6 5 —\o -6 2

3

O = O

1
Thus L = (2
1

M:(

9
3
6
Fa=Ra=2iRe (0 9112 =U. ThusL=1{ 2 10
0 089

4 6
3271

> o W

1 2-14 1 2-1 4 1 2-1 4
7 A = 0-1 58 R3—-R3;—2R; { 0-1 5 8 Rg—=Ry-R | 0-1 5 8
’ 2 3 14 - {0-1 3-4 -} 0-1 3-4
1-1 64 1-1 6 4 0-3 7 0
1 2-1 4 1 2-1 4
Ry—~R3—-R2 | 0-1 5 8 Ry—~Ry-3R; | 0—-1 5 8 Ry — By —4R3
_ 510 0-2-12 —— 10 0-2-12 —_—
0-3 7 0 0 0-8-24
1 2-1 4 1000
0-1 5 8 0100
0 0 0 24 1341



8.

10.

11.

12.

LU-Factorizations of a Matrix Section 1.11

2 3-16 2 3-1 6 2 3-1 6
A 4 7 21) RR—R-2R| 0 1 4-11] R—Rs+Ri[0 1 4-11
~ -2 5-20 -2 5-2 0] — |0 8-3 6
0-4 52 0-4 5 2 0-4 5 2
2 3 -1 6 23 -1 6 23 -1 6
Ry—R3—8R; [0 1 4-11| Ri—»R«+4R2[01 4-11| R —»Re+2R:s[01 4-11
— |0 0-35 94 100-35 94 {0035 94
0-4 5 2 00 21-42 00 o %2
1 0 00
2 1 00
U. Thus L = 18 10
0-4-21

From problem 1 we have A = LU where L = (1 0) and U = (1 2). The system Ly = b, i.e.,

31 0 -2

31 Y2

(1 0) (yl) = <—z> yields the equations y; = —2 and 3y, + y2 = 4. Solving we get y» = 10. Now,

0-2 T

fromUx =y, ie., (1 2) (Il) = (;g) we obtain z; + 223 = —2 and —2x; = 10. Backsolving

we get 7 = 8, 2o = —b. The solution is (_g)

From problem 2 we have A = LU where L = ((IJ (1)) and U = ((1) g) The system Ly = b,
. 10 Y1 -1 . . .
ie., = yields the equations y; = —1, y2 = 4. Now, from Ux = y,ie,,
01 Y2 4
—11

4 —11
and z5 = 3 The solution is ( 34 ) .

3

—61 033

(1 2) (:cl) — (—‘11) we obtain z; + 2zs = —1 and 3zs = 4. Backsolving we get z;

From problem 3 we have A = LU where L = ( 1 O) and U = (—1 5). The system Ly = b, i.e.,

—-61

( 1 0) (yl) = (g) yields the equations y; = 0, —6y; + y2 = 5. Solving we get yo = 5. Now,

Y2
-1 5

from Uz = y, i.e., < 033 s

&le 8IS

)

1
From problem 4 we have A = LU where L = (2
3

T, = %,xz = % The solution is (

O O

1

|

1 00 %1 -1 10
2 10 y2 | = 7 | yields the equations y; = —~1, 2y +y2 = 7, 3y1 + gyz +y3 = 2. Solving
3 159 1 '

Y3 2

) (zl) = (g) we obtain —z; + 5z2 = 0, 33z2 = 5. Backsolving we get

0 1 4 6
0],U=1]0-9 -9 }. The system Ly = b, i.e.,
1 0 0-3
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13.

14.

15.

1 4 6 zy -1
wegetyy = —1,y2 =9, y3 = —5. Now, from Ux =y, ie, | 0 -9 -9 zg | = 9 | we obtain
0 0-3 z3 -5
-1 -8 5
€, + 4xy + 6z3 = —1, —9x3 — 923 = 9, —3z3 = —5. Backsolving we get z; = 5 , Ty = R , T3 = 3
__1
3
The solution is 'TS
5
3

100 21 7
From problem 5 we have A = LU where L = (2 1 0) and U = (0 1 —9). The system Ly = b,
101 00-1

100 Y 6
e, 1210 y2 | = | 1] yields the equations y; = 6,2y; +y2 = 1, 1 + y3 = 1. Solving we

101/ \ys 1

21 7 zy 6
get y1 = 6,y2 = —11,y3 = —5. Now, from Ux = y,ie, | 01 -9 zoa | = | —11 | we obtain
00-1 T3 -5

2z + x93 + Tz = 6, x9 — 93 = —11, —x3 = —5. Backsolving we get =, = 2 , Tz = 34,23 = 5. The

—-63
2

solution 1s ( 34).
5

1 00 3 9-2
From problem 6 we have A = LU where L = ( 2 1 0) and U = (0 -21 12) . The system Ly =
221 0 0%
1 00 1 3 4
b,ie, | 2 10 y2 | = | 16 | yields the equations y; = 3, 2y, + y2 = 10, yl + yz +ys =4
sal/) \w 4
Backsolving we get y1 = 3,¥2 = 4,y3 = - Now, from Ux = y, 1e., | 0 -21 12 T | =
0 0 29—1 T3
3 9 -8 275
4 | we obtain 3z1 + 9z — 223 = 3, —21lzs+ 1223 =4, ——x3 = —. Solving we get £; = ——,zy =
—8 21 7 63
7
19 _8 275/63
—= z3 = —. The solution is | —12/7
7 3 -8/3
1000 1 2-1 4
0100 0-1 5 8
From problem 7 we have A = LU where L = 9110 and U = 0 0-2-12 | The system
1341 0 0 0 24
1000 V1 3
s 0100 y2 | _ | -11 . . _ _ _
Ly = b, ie,, 2110 v | = 4 yields the equations y; = 3,yo = —11,2ps + yo + y3 =
1341 Y4 -5

4,y + 3y2 + dys + ya = —5. Solving we get y; = 3,y2 = —11,y3 = 9,y4 = —11. Now, from Ux =y,



16.

17.

LU-Factorizations of a Matrix Section 1.11

1 2-1 4 z 3
. 0-1 5 8 e | | -1 . _ e _ _
Le, | g g_9 12 i 9 we obtain =1 + 2z9 x3+4:c4_3/,” zo + 523 + 8x4 = —11,
0 0 0 24 T4 -11
923 — 1924 = 9, 24z4 = —11. Backsolving we get 1 = = 27 = =t 23 = — 24 = ik Th
—2z3 — 1224 = 9, 2424 = - Backsolving we get 21 = 15,22 = 57, %3 = -, 24 = /- The
[ T1/12
. —17/12
solution is —7/4
—11/24
1 0 00 23 -1 6
_ 2 1 00 {01 4-11
From problem 8 we have A = LU where L = 1 8 10 and U = 00-35 94 . The
04321 00 o 2
1 0 060 1 1
system Ly = b, that is, 2 100 V2 1 = 0 yields the equations y; = 1, 2y; + y2 = 0,
-1 8 10 Y3 0
0-4321/ \y 4

3 . 31
- +8y2+ys =0, —4y2— gy3+y4 =4. Solvingwe get y1 =1, y2 =2, y3 =17, y4 = 5 Now from

23 -1 6 3 1
. 01 4-11 zz2 | _ | -2 . _ _ _ _
Ux =y,le., 00 —35 94 zs | = | 17 we obtain 2z + 3w —x3+6x4 = 1, 29+ 45— 11y =
00 0 2/ \ay &
72 31 . —565 5 169 31
—2,—35.’1?3 + 94174 = 17,—5‘1,'4 = 3‘ Solvmg we get Ty = m,l‘g = *7—5,.1:3 = 25—2,1?4 = 7—2 The
—565/1008
.. 5/72
solution 1s 169,/252
31/72

02\ Ri=2R: (14) _ _ {01 _ ({01 02y _ [14Y _
(a)<14) (02)_U.ThusP—(10).PA—(10)(14)..(02)—Uor

10
PA = LU where L = (0 1).

b) LUx = PAx = Pb = ((1)(1)) (_g) = (_g> We seek a y such that Ly = (_g> From

Ly = 10 i) — - we get y; = —b5, y2 = 3 and hence y = -5 . Now, we seek an x such
01 Y2 3 3

that Ux =y = <—g) That is ((1);) (;;) = <—g) We get 1 + 4z3 = —5 and 2z = 3. Solving

3 Y
we get 1 = —11,z9 = 7 The solution is ( lé)
2
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0 24 1-12 oy [1-1 2 010
Ry R3 — =
18. a) [1-12] =0 24) 770 2 4| ThenP = [100],and PA =
0o 32/ —\o 32/ ——\o 0-4 001

1-12 1-12
(0 2 4) . Now we row reduce PA to an upper triangular matrix. (0 2 4)

0 32 0 32
o ap [1-1 2 100
Ra—mRa-3Re 0 9 4| =U. Thus PA=LU where L= {010 .
" \0 0-4 021

010 -1 2 2
b) LUx = PAx=Pb=[100 2] =1 -1]. Weseek a y such that Ly = | —~1 |. From
001 4 4 4

100\ [wm 2 3 11
Ly=1010 y2 | = -1] wegetyn = 2,92 = —1,§y2 + y3 = 4. Solving we get y3 = -
031 4

Y3

2 2 1-1 2 T
and thus y = —1 |. We seek an z such that Ux = —1].Thatis [0 2 4 zy | =
11/2 11/2 0 0-4 T3

2
—1 1. We get ¢y —z2+223 =2, 229+ 4z3 = -1, —4z3 = —ll Solving we get 1 =7, 3 = 9‘,1‘3 =
11/2 2 4
~11 7
——. The solution is 9/4 1.
8 ~11/8
024 415 » 41 5 001
R1ZR, R3 — R3 — 2R,
19. (a) {037 S los7 $T 7™ 093 7). ThenP = [010 |, and PA =
415 024 0032 100
415\ o p _a2p (41 5 100
037 8T T 103 7| =U. Thus PA=LU where L= {010 ].
024 0032 021

001 -1 2 2
b)LUx = PAx = Pb= [ 010 0] = 0 |. We seek a y such that Ly = 0 |. From
100 2 -1 -1

0N 2 9
) (yz) = ( 0) we get y1 =2,y =0, §y2 + y3 = —1. Solving we get y3 = —1, and
-1

0
1
2
3
2 2 41 5 1 2
thus y = 0 |. Now, we find an x such that Ux = 0)]. Thatis | 03 7 Ty | = 01}.
-1 -1 0032/ \=zs -1

-2
We get 421 + 22+ 523 = 2, 322+ Tx3 =0, T:c;; = —1. Backsolving we get ©; = —z9y = —

-1/2
The solution is | —7/2 |].
3/2
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05 -1 23 5 23 5 010
R1Z2R R3 — R3 — 2R
2. (a) [ 23 5 o5 -1 PTT05 -1 ). Then P = | 100 | and PA =
4617 46 -7 00-17 001

23 5 23 5 100
(05—1) R"_'R““m‘(M —1)=U. ThusPA:LUwhereL:(OlO).

46 -7 00 -17 201
010 10 -3 -3
b) LUx = PAx=Pb=]100 —3 ) =1 10 ). We seek a y such that Ly = | 10 |. From
001 5 5 5
100 Y1 —_'_3
Ly=]1010 y2 ) = 10 } we get y3 = —3,y2 = 10,2y; + y3 = 5. Solving we get y3 = 11 and
201 Y3 5
-3 -3 23 5 z -3
y=| 10 J. Now, we find an x such that Ux = | 10 ]. Thatis | 05 -1 z2 ) = 10 ]. We
11 11 00 -17 z3 11

—457 159 -11

170 * %2~ g5 3T 17

get 2¢1 43¢+ 523 = —3, bzs—xz3 = 10, —17z3 = 11. Solving we get =, =

—457/170
The solution is 159/85 |.
~11/17
0 2 31 0 2 31\ 0 2 31
21. (a) 0 4—15) R >R;—2R: {0 0-73 R;Z2Re [0 0-T73
2 0 31 — 12 0 31 — {1-4 56
1-4 56 14 56} 2 0 31
0 2 3 1 0 2 3 1
Ry —Ry-2R3 {0 0-7 3 Riy—>Ry—-4R1 {0 0 -7 3 Ry — Ry — 2R,
—  ,|l1-4 5 6 . l1-4 5 6 -
0 8-7-11 \0 0-19 -15
0 2 3 1 1-4 5 6 1-4 5 6 0001
0 0-7 3) R1ZR; (0 0 -7 3 R 2R3 (0 2 3 1 Then P — (1000
1-4 5 6 0 2 3 1 —_—10 0-7 3 ) 0100
0 0 0# 0 0 0—"%2 0 0 0%62 0010
1-4 56 1-4 56 1-4 5 6
and PA — 0 2 31 R3 - R3—-2R; | 0 2 31) Ry—Ry—-2R; |0 2 3 1
0 4-15 - 10 0~-73 - 10 0-7 3
2 0 31 2 0 31 0 8-7-11
1-4 5 6
Ry —» Ry — 4R, (0 2 3 1 Ry = Ry — 2R3
- 10 0 -7 3 —_——
0 0-19-15
1-4 5 6 10 00
g g_? ;):U.ThusPA:LUwhereLz 8; (1)8
0 0 0=12 2421
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0001 3 4 4
1000 -1 3 3
b)LUx = PAx = Pb = 0100 o | =1 -1 . We seek a y such that Ly = 1 . From
0010 4 2 2
10 00 0N 4
01 00 3 19
Ly: 02 10 z; = -1 Wegetyl=4,y2:3,2y2+y3:—1,2y1+4y2+793+y4:2-
2411 Ya 2
4 4
Solving we get y3 = =7, y4 = l,and y = _3 . Now, we find an x such that Ux = _,? . That
1 1
1-4 5 6 z 4
. 0 2 3 1
s g og_7 3 2 = | _ . We get z; — 4z3 + 5z3 + 6x4 = 4, 2z + 373 + T4 = 3,
0 0 0=/ \z, 1
-162 . —-73 4 53 -7
~Tz3 + 34 = 7, 7 4 = 1. Backsolvmgwegetz]——1—5,:52—.8—1,:63_54,1'4._—1—6——2—. The
—73/162
. 4/81
solution is 53/54
—7/162
00-2 3 04-2 5 04-2 5
22. (a) 50-6 4 R12R, 50 6 4 Ri—Rs-%R, [ 50-6 4
' 20 1-2 -2 00 i =38
04-2 5 00 2 3 00-2 3
50-6 4 50-6 4 0100 50-6 4
RiZR; [ 04-2 5 R4—"R4+10R3 04-2 5 (0001 | 04-2 5
— oo = 00 1z =8 - Then P=t gqyqfandPA=150 1
00-2 3 00 0 1 1000 00-2 3
{50 -6
R3—+R3—§-R1 04 -2 5 R4-—>R4+10R3
00 157 —518
\00-2 3
50-6 4 10 00
83—1_3:1_2 = U. Thus PA = LU where L = (%)(1) (1)8
=
00 0 33 00321
01060 -2 4 4
0001 4 7 7
b) LUx = PAx = Pb = 0010 5| = 5 . We seek a y such that Ly = 5 From
1000 7 ~2 -9
10 060 n 4
o1 ool {w)_| 7 _ .2 _ . 10 _
Ly“ %0 10 v3 — 5 wegety1—4)y2—7)5yl+y3"5) 17y3+y4——"2
00—%)-1 Ya 2

4 4

7 _ 7
1775 | Now, find an x such that Ux = 17/5

0 0

1
_Zvy‘l = 01andy =

Solving we get y3 = 3
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50-6 4 z1 4
That is 00 LSZ—TIS e | = 175 | e get bey — 6z3 + 44 = 4, 4y — 203 + 51y = 7,
00 0 13/ \z4 0
2
17 18 17 15 . 9 . 4
g—za—?x4=?,ﬁx4=0. Solvmgweget:cl:?,xz:Z,z3=1,34=0. The solution is 9/1
0
0-2 3 1 0-2 3 1 0-2 3 1
(a) 0 4-3 2 Ry - Ry+2Rs |0 4-3 2 Ry Rx+2R; ({0 0 3 4
1 2-3 2 _ 11 2-3 2 —_ |1 2-3 2
—-2-4 5-10 0 0-1-6 0 0-1-6
/0—2 3 1 0-2 3 1 1 2-3 2
R:Z2Ry [0 0 -—~1-6 Ry - R4+3R: {0 0-1 -6 R:Z2R; (0 0-1 -6
—_—l1 2-3 2 - {1 2-3 2 —+{0-2 3 1
\0 0 3 4 0 0 0-14 0 0 0-14
(1 2-3 2 0010 1 2- 2
R,Z2R3 | 0-2 3 1 _ 1000 _ 0-2 3 1
—— o 0-1 —6)‘Th“‘P = (0001 and PA = | 9 _4 5_10
\o 0 0-14 0100 0 4-3 2
1 2-3 2 1 2-3 2 1 2-3 2
R3—Rs+2R | 0-2 3 1 Ry—-R4+2R2 | 0-2 3 1 Ry —R4+3R3 | 0-2 3 1] _
- 10 0-1-6 0 0-1-6 10 0-1 -6
0 4-3 2 0 0 3 4 0 0 0-14
1 0 00
0 1 060
U. Thus PA = LU where L = —2 0 10
0-2-31
0010 6 0 0
_ _ _|1000 1 6 I G
b) LUx = PAx = Pb = 0001 0 5 . We seek a y such that Ly = 5 . From
0100 5 1 1
1 0 00 " 0
01 00 6
Ly = -2 0 10 zz = 51 We get h = anz = 6:—23/1 + Ys = 57_2:‘/2 - 3!/3 + Yq = 1.
0-2-31 Y4 1
0 0
Solving we get y3 = 5, ¥4 = 28, and y = g . Now, find an x such that Ux = g That
28 28
1 2-3 2 z1 0
. 0-2 3 1 z 6
1S 0 0—1 —6 .’l:; = 5 . We get 1 + 2z — 323 + 224 = 0, =229 + 323 + 24 = 6,
0 0 0-14 Z4 28

. 3
—z3 — 6x4 = 5, —14z4 = 28. Backsolving we get £; = 12, x5 = 2 z3 = 7, €4 = —2. The solution is

12
13/2
7
)
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n
24. Let B = LM. b;; = El,-kmk;. Since L and M are lower triangular with ones on the diagonal, we

25.

26.

27.

28.

29.

k=1
have the following conditions: ljz = 0ifk > i, mg; = 0if ¢ > k, l;; = 1,and my; = 1. Soifk < ¢

n
or k > i we have that l;ymi; = 0. If k = i we have l;;m;; = 1. Thus b;; = Zlikmk; = 1. Now
k=1
bij = Elikmkj. mg; = 0if j > k, lix = 0if k > 4. Suppose j > i. If k < i, then k < j and hence
k=1
myj = 0. If & > i then l;z = 0. Thus if j > 4 then lizm;; = 0 and hence b;; = 0. Therefore LM is
lower triangular with ones on the diagonal.

Suppose that L and M are upper triangular. Then if j < 4, l;; = 0O and m;; = 0. Let B = LM,

bij = Zl,—kmkj. Suppose j < i. If k < j, then k < ¢ and hence l;z = 0. If k > j, then m; = 0. Thus
k=1
if 7 < 7, then ljzmi; = 0 and hence bi;j = 0. Therefore LM is upper triangular.

1 2 1 -1 2 1 121
— R — R R
A= 9-4_9) BBt o o o) BemRetll 650 — U Thus 4 = LU
484 4-8_4 —\ 000

100 100 -121 -1 2 1
where L= —-210]. Also | -210 000 ] = 2 —4 —2 | for any real number z. So the
-401 -4zl 000 4 -8 -4

LU-factorization of the matrix is not unique.

3-3 25 1000 3-325
2 1-60 al00 0 vovw o .

A= 5_9-45|=1bc10 0 0z y . This yields the equations 3a = 2, —3a+u = 1,
1-4 85 de f1 0 00z

2a4+v=-6,5a+w=0,3=5-3b+cu=-2,2b+cv+zc=-450b+cwt+y=253d=1,
—3d+eu=—-4,2d+ev+ fr =8,5d+ew+ fy+2=25. Solvingwegeta:%,b:g,c.—.l,d:%,

e:—1,f=anyrealnumber,u:3,v='Tn,'w:::jlg,x:O,y:O,zzo. Thus A = LU where

1 000 3-3 2 5
2 100 0 3=22=10
L=]3 , where f can be any real number, and U = 3 3 |. Since there is more
3 110 0 0 0 O
5-1f1 0 0 0 O
than one possibility for f, the LU factorization of A is not unique.
12\ R:—R;—2R (12 _ _ (10
A-—(24) (00>_U. ThusA_LUwhereL..<21).
-12 3 -12 3 -12 3
R; — R 2R R3 - R R
A = 91 7| UM o513 TR 0513
1310 1310 0513

12 3 100
R"'*R"‘"Rz( 0513) — U. Thus A = LU where L = (—210).

00 0 -111
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-1 14 6 114 6 ~114 6
0.4 — 2-10 2| RemRe+2Ri| 01814) Ri—Ri+Ri| 01814
' 0 315 — .l os1s5)] — .| 0315
1 3513 13513 04919

-11 4 6 -11 4 6

R3 — R3 — 3R; 01 8 14 Ry — Ry — 4R; 01 8 14 Ry = Ry — R3
00 -23 -37 _ 00 -23 -37 SO

04 9 19 00 —-23 =37
-11 4 6 1000
01 8§ 14) B [ -2100
00 —23 —37 =U. Thus A = LU where L = 0310
00 0 0 -1411
r2-11 7 2-1 1 7 2—.} 11 ’97
394 = [3 21 6] RemRa-fRif0 §-3~3| ReoR-3Ri [0 53-5—3
) 1 30-1 _ 11 3 0-1 — o %_%_%
4 51 5 4 5 1 5 4 5 1 5
2—-1 1 7 2.1 1 7
— Ry — 0 Z-1_2 — Ry — 2R T_1_9
oo g f g e #7209 =5 =5 = U. Thus A = LU where L =
0 7-1-9 0 0 0 O
1000
3100
1110
2201
2-10 2 2-10 2 2-102
39 A = 4-20 4 R; — Ry — 2R, 0 00 O Ry;—Rs+R; [0 000
4T 2 102 —— -2 10-2] — |0 000
6-30 6 6-30 6 6-306
2-102 1000
Ry—R{—-3R; {0 000 _ _ 2100
0 000 =U. Thus A = LU where L = _1010
0 000 3001

al Quv

33. A= (_i gi) = (1 0) (1 2 3). This yields the equations a = —1, 2a+u = 2, 3a + v = 4. Solving

10 123
we get u =4, v=7. Thus A= LU where L = (_1 1) and u = (047).

60 becl

21 100 21
3. A=|-14]=1al0 0 u ). This yields the equations 2a = -1, a+u =4,2b =6, b+ cu = 0.

00

_1 _9 9 1 00
Solving we get a = T’b = 3,¢c = U= 5 Thus A = LU where L = —--;- 10 ] and
3

21
v=[(0%2]).
00
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35.

36.

37.

38.

7134 (10 713 4 . . _ _ -
A_(—-2568)_(a1) <0uvw).Thlsyleldstheequatlons7a——2,a+u_5,3a+v_6,

4a+w = 8. Solvingwegeta:—-TQ,U:377,1)=47—8,11):?7é Thus A = LUwhereL_( 210) and

po (7T 1 3 4
=\ 037/748/764/7 )

4-1 21 100 4-121
A=12 1 65}]=1]al0 0 u v w |. This yields the equations 4a = 2, —a+u = 1,2a+4v =

3 2-17 bel 0 Oz y
6a+w =54b=3,~b+cu=22b+cv+a=-1btcw+y=T. Solvingwegeta:—é—,b:
1 00
§,c: 1—1~,u: §,v:5,w: g,x: -3E,y:—2. Thus A = LU where L = (% 10) and
4 6 2 2 3 311
76
4 -1 2 1
U=103/2 59/2 .
0 035/3 -2
5 13 10000 513
-2 42 al000 Ou v
1 61| =]bcl100 0 0 w |. This yields the equations 5a = —2,a+u = 4,3a+v = 2,56 =
-2 20 defl0 000
5-31 ghijl 000
1,b4cu = 6,3b+cv4+w =1,5d = —2,d+eu = 2,3d+ev+fw = 0,59 = 5, g+hu = =3, 3g+hv+iw+5.0 =
1. Solvingwegeta:g—,b % Zg d——gge“lsl,f—;,gzl,h:%,i 215 j = any real
1 0 000
22 16 —42 —2/5 1000
number, u = VT W E Thus A = LU where L = 1/56 29/22 100 |, j any real
-2/5 6/11 1/7190
1-10/11 -5/21 51
5 1 3
022/5 16/5
number, and U = | 0 0 —42/11
0 0 0
0 0 0
-121 10 000 -121
165 al 000 Ou v
A=1-2371=1bcl100 0 0 w |. This yields the equations —a =1,2a+u=6,a+v =
102 de f10 000
415 gh 131 000
5 —b=—22b+cu=3,b+cvt+w="7—-d= 1,2d+eu=0,d+ev+fw _2 ,—9=4,29+hu=1,g+hv+
. . . -1 9 9
iw+j- = 5. Solving we get a = —1,b=2,c = 8,d— = ,f ,g —4,h = 3 _ﬁ’]—
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1 0 000
any real number, u = 8, v = 6,w = —. Thus A = LU where L = 2-1/8 100 |, s any real

4 ~1 1/46/2310

-4 9/89/23;j1

-12 1

08 6

number, and U = 0023/4
00 0

00 0
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CALCULATOR SOLUTIONS 1.11

Problems 39-44 ask for a PA = LU factorization. This is computed on the TI-85 by the LU function, which is
invoked with four arguments in the form LU (A, L, U, P), where A is the input argument - the name of the variable
containing the matrix to be factored, and L., U, P are output arguments, telling the function names for the variables
in which to store the respective parts of the factorization. You can invoke this function by entering the alphabetic
characters shown, including the three commas or you can use the MATRX MATH (MORE) LU menu entry, and
then entering the "A, L, U, P" entries. As usual we will assume the input matrices are entered in variables A111nn,
nn=39, - - -, 44 The LU factorization computed on the TI-85 is actually the "Crout" LU-factorization which
gives an upper triangular U with ones on the diagonal, as if we had found an echelon form of PA by forward elimina-
tion without row interchanges.

39. After entering LU(A11139,L11139,U11139,P11139) |[ENTER], we find that

(130 0 1

111139 [ENTER] yields [ 0 2 0 1.,

[ 2 -1.66666666667 8.5 1]

{{ 1 .333333333333 2.33333333333 ]

U11139 yields [ 0 1 2.5 1,
[ OO0 1 11
([ 0101
and for the permutation matrix P11139 [ENTERJis [ 1 0 0 ] .
[ 0011]]

40. After LU(A11140,L11140,U11140,P11140) (ENTER}, we find that

([ 16 0 0 0 ]
. [ 4 10.75 0 0 ]

L11140 {ENTER] yields ,
y [ 13 -2.0625 14.9534883721 0 1

[ 2 -1.625 8.72093023256 8.29237947123 1]

[ .3125 -.5 .25 ]

1.67441860465 -.837209302326 ]

U11140 yields

O O O

(
[
[
[

1 -.132192846034 1’
0 1 1]
([ 000 1]
. ' . {0100
and for the permutation matrix P11140 [ENTER|] gives {0010 ]
{10001]]

41. After LU(A11141,L11141,U11141,P11141) , we find that

([ 16 0 0 0 !
L11141 ields L 0 77 0 0 ]
€
yi [ 5 4.5625 8.16964285714 0 1
[ ]

2 -.375 -1.58928571429 2.97595628415 1]
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[[ 1 -.3125 .6875 .5 ]
[ 01 -.571428571429 -.142857142857 ]
ENTER] yield s
ullidl yiees [ 00 1 .018579234973 ]
[ 00 0 1 11]
[[ 00 01]
. . . [ 100 0]
and for the permutation matrix P11141 gives [0100]
[ 0010 ]]

42. After LU(A11142,L11142,U11142,P11142) , we find that 1.11142 yields

[l 71 0 0 0 0 ]
[ 35 69.676056338 0 0 0 ]
[ 14 38.0704225352 79.5154639175 0 0 1,
[ 14 14.0704225352 19.5967252881 -33.4575239664 0 ]
[ 23 24.9014084507 24.2302405498 -31.3474653183 14.7770382416 ]]
U11142 (ENTER) yields
[[ -.647887323944 .830985915493 .915492957746 -.30985915493 ]
[ 01 -1.57994744289 -.129775621589 -.561956741459 ]
[ 0O 1 .227926876702 1.48061713989 ] ,
[ 00 0 1 .112687668795 ]
[ 00 0 0 1 1]
([l 00100]
[ 00010 ]
and for the permutation matrix P11142 gives [ 0000 1]
[ 01000 ]
[ 10000 1]

43, After LU(A11143,111143,U11143,P11143) , we find that

[[ .91 0 ]
. [ .83 .50021978022 0 0 ]
L11143 [ENTER] yields
y [ .46 -.036263736264 .189244288225 0 ]’
[ .21 .266923076923 .063804920914 .049489575595 ]]
([ 1 .252747252747 .175824175824 -.21978021978 ]
. [ O -1.65114235501 1.90399824253 ]
U11143 (ENTER) yields
-y [ 00 1 -2.21858748143 1’
[ O 0 1 11

{

{ 01
. . . [ 00
and for the permutation matrix P11143 gives o
[10

44, After LU(A11142,111142,0U11142,P11142) , we find that
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({10000 ]
[ 05000 ]
111144 [ENTER) yields [ 1 0 3 0 0 1,
[ 00050 ]
[ 0023 -1.61]]
[(f120 0 0 1
[011.2 .20 ]
Ul1144 (ENTER) yields [ 0 01 0 0 ],
(000 1 1.2]
[ooo o0 1 ]
({10000
[ 00100 ]
and for the permutation matrix P11144 gives [ 0100017 .
[00001]
[ 00010 1]]
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LU-Factorizations of a Matrix MATLAB 1.11

1. We eliminate down each column, and accumulate the product of the inverses of the elementary matri-

ces.

[82-46; 101 -89; 47 10 3]1;

> A =
>> U = A;
> ¢ = -U(2,1)/U(1,1);
>> F = eye(3); F(2,1) =
>> U = F*U;
>> L = inv(F)
L =
1.0000 0
1.2500 1.0000
0 0
> ¢ = -U(3,1)/U(1,1);
>> F = eye(3); F(3,1) =
>> U = F*U
U =
8.0000 2.0000
0 -1.5000
0 6.0000
>> L = L*inv(F)
L =
1.0000 0
1.2500 1.0000
0.5000 0
>> ¢ = -U(3,2)/U(2,2);
>> F = eye(3); F(3,2) =
>> U = F*U
U =
8.0000 2.0000
0 -1.5000
0 0
>> L = L*inv(F)
L =
1.0000 0

1.2500 1.0000
0.5000 -4.0000

>> L*U

2 -4
1 -8
7 10

-4.0000
-3.0000
12.0000

(o]
0]
1.0000

c;

-4.0000
-3.0000
0

1.0000

% Eliminate U(2,1).

% Eliminate U(3,1).

6.0000
1.5000

% Eliminate U(3,2).
% Notice that U is in echelon form.

6.0000
1.5000
6.0000

% Notice that L is lower triangular.

% This should be the same as A.
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2.
>> A = rand(5); % A random 5x5 matrix.
>> b = rand(5,1); % A random 5 vector.
>> flops(0); rref([A bl); frref=flops
frref = % This number will be slightly higher in MATLAB 3.5

1986 % It may also vary slightly for different random A

>> flops(0), x = A\b, flu=flops
x =
-0.9377
0.7523
0.8705
-0.0748
0.1154
flu =
271

(b) The previous code can be repeated several more times for part (b).

(¢) The number of operations was fewer for the second version. However, very similar operation counts
should apply for the A\b and rref methods. The great discrepency here results from the fact that
rref incurs an enormous overhead when it attempts to produce nice (rational) results if appropriate.
You can enter the MATLAB command type rref to see the code, which always includes at least one
call to rat(A). If you compute £lops(0) ; [num,den]=rat(4);all(all(A==num./den));flops to de-
termine the number of flops involved in deciding rationality, you will find that, say for a 5x6, there
are about only 210 flops of the 1900 reported above which actually arise from rref. Thus rref([A
bl) and A\Db do, infact take almost the same number of operations.

Even without the calls to ‘rat’, the computed counts indicate a bit of overhead. If you did rref by
hand, you’d do less than 200 multiplications, divisions and additions. (In fact less than 125 if you
avoid unnecessary operations, see Appendix 3, page A-27 and the solution to A3.3). Similar counts
would apply to LU-factorization followed by forward and back elimination on the right hand side,
even when partial pivoting is done.

3. (a)

>> A = 2*rand(3)-1

A =
0.4834 0.0500 0.4268
-0.9618 -0.0734 -0.0221
0.7721 -0.8696 0.3354

>> [L, U, P] = 1u(a)

L =
1.0000 0 0
-0.8027 1.0000 0
-0.5026 -0.0141 1.0000
U =
-0.9618 -0.0734 -0.0221
0 -0.9285 0.3176
0 0 0.4202
P =
0 1
o] 0 1



(b)

L*U

-0.9618 -0
0.7721 -0
0.4834 0

P*A

-0.9618 -0
0.7721 -0
0.4834 0

.0734
.8696
.0500

.0734
.8696
.0500

LU-Factorizations of a Matrix MATLAB 1.11

% This should be the same as P*A below.

-0.0221
0.3354
0.4268

% This should be the same as L*U above.

-0.0221
0.3354
0.4268

>> A = round(10*(2*rand(4)-1))

10 (]
-6 8
-1 -1
-4 -1
= 1lu(a)
0 0
1.0000 0

0.4457 1.0000
-0.3696 0.3677

-7.0000 -1.0000
11.5000 10.5000

O O O =

0 -7.8043
0 0

0

0

1

0

-1

0]

-1

8

1.0000

-1.0000
0.5000
-0.3478
7.5627

>> ¢ = ~C(2,1)/¢(1,1); F = eye(4); F(2,1) = c; Y% Eliminate C(2,1).

0 0
1.0000 0
0 1.0000
0 0

A=
4
-6 1
8 -7
7 -1
>> [L, U, P]
L =
1.0000
0.5000
0.8750
-0.7500
U =
8.0000
0
0
(o}
P =
0 0
1 0
0 0
0] 1
>> C = P*A
C =
8 -7
4 8
7 -
-6 1
>> C = F*C;
>> L2 = inv(F)
L2 =
1.0000
0.5000
0
0
>> c =

>> C = F*C;

% L2 should end up the same as L.

o]
0
0
1.0000

-C(3,1)/¢(1,1); F = eye(4); F(3,1) = c¢; % Eliminate C(3,1).
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>> L2 = L2*inv(F); % Accumulate product of inv(F)’s.

> ¢ = -C(4,1)/¢(1,1); F = eye(4); F(4,1) = c; % Eliminate C(4,1), end col. 1.
>> C = F*C

C =

8.0000 -7.0000 -1.0000 -1.0000
0 11.5000 10.5000 0.5000
0 5.1250 -3.1250 -0.1250
0 -4.2500 -6.7500 7.2500

>> L2 = L2*inv(F) % Note column 1 of L and L2 agree.
L2 =
1.0000 0 0 0
0.5000 1.0000 0 0
0.8750 0 1.0000 0
-0.7500 0 0 1.0000
> ¢ = -C(3,2)/C(2,2); F = eye(4); Y% Eliminate C(3,2), start col. 2
>> F(3,2) = c; % Note C(2,2) is largest in column 2.
>> C = F*C;

>> L2 = L2#*inv(F);

> ¢ = -C(4,2)/¢(2,2); F = eye(4); F(4,2) = c; % Eliminate C(4,2).
>> C = F*C % This finishes column 2.
C =
8.0000 -7.0000 -1.0000 -1.0000
0 11.5000 10.5000 0.5000

0 0 -7.8043 -0.3478
0 0 -2.8696 7.4348
>> L2 = L2*inv(F) % Now column 2 of L2 and L agree.
L2 =
1.0000 0 0 0
0.5000 1.0000 0] 0
0.8750 0.4457 1.0000 0
-0.7500 -0.3696 0 1.0000
> ¢ = -C(4,3)/C(3,3); F = eye(4); F(4,3) = c; % Eliminate C(4,3).
>> C = F*C % Note c(3,3) is largest.
C =

8.0000 -7.0000 -1.0000 -1.0000
0 11.5000 10.5000 0.5000

0 0 -7.8043 -0.3478
0 0 0 7.5627
>> L2 = L2*inv(F)
L2 =
1.0000 0 0 0
0.5000 1.0000 0 0
0.8750 0.4457 1.0000 0

-0.7500 -0.3696 0.3677 1.0000

Notice that C reduces to U and that L2 is the same as L, as predicted. At each step we can
check that the pivot was the largest number (in absolute value) when compared to those below
it in the same column.



>> A = rand(3)

A=
0.7734
0.7273
0.3192

> [ L, U, P]

0.4177
0.6825
0.6806

{]

1u(a)
1.0000
0.5700

0.4177
0.5082

[

0.4177
0.6806
0.6825

>> B(2,:) = B(2,:) -

0.4177
0.5082
0.6825

B(3,:) -

0.4177
0.5082
0.2896

>> B(3,:) = B(3,:) -

L =
1.0000
0.4127
0.9405

U =
0.7734

0
0

P =
1
0
0

>> B = P#A

B =
0.7734
0.3192
0.7273

B =
0.7734

0
0.7273

>> B(3,:)

B =
0.7734

0
0.0000

B =

0.7734
0
0.0000

0.4177
0.5082
0.0000

0.2053
.8364
0.7089

o

1.0000

0.2053
.6242
0.2876

(o]

0.2053
0.7089
0.8364

LU-Factorizations of a Matrix MATLAB 1.11

% A random matrix.

% Store P*A in B, and work with B.

L(2,1)*B(1,:) % Eliminate B(2,1) using

0.2053
0.6242
0.8364

% L(2,1) as the multiplier.

L(3,1)*B(1,:) % Eliminate B(3,1).

0.2053
0.6242
0.6434

L(3,2)*B(2,:) % Eliminate B(3,2).

0.2053
0.6242
0.2876

Notice that B was reduced to U, as expected.
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Section 1.12

01100 00100

8338 00010 10010

O 2. 11010 3. lo1010
oo 00101 11101
10100 01000

001200

100100
000101 12 7N

4. 110010 Si:;’ 6.4«—%;3
000100 \5

101010

] «a» 2 «—

1 XN\

3 a4 «— 5

N

6

11020
00101
8 A2=1]101211]. Thus there are 21 2-chains.
21110
12110

01312
21110
A3=132231|. Thus there are 42 3-chains.
13321
12231

53341
13321
A*=135743]. Thus there are 86 4-chains.
44462
33543

01010
112011}
9. A2=]21111]. Thus there are 21 2-chains.
12120
10010

21111
13130
A3 =123321|. Thus there are 45 3-chains.
43332
11201




10.

11.

12.

Graph Theory: An Application of Matrices Section 1.12 155

23321
64443
A*=1 56462 |. Thus there are 93 4-chains.
68763
13130

Given a redundant path from vertex A to vertex B, it is possible to construct a shorter path from A
to B by not passing through any vertex more than once. Thus, the shortest path linking two vertices
is not redundant.

Since A represents the total number of 1-step links between vertices and A2 represents the total num-
ber of 2-step links between vertices, then A + A2 represents the number of 1-step or 2-step links be-
tween vertices.

Direct dominance: Py over Py; P3 over Pi, Ps, Pg; Ps over Py; and Pg over Py, Py.

Indirect dominance: P; over Py, Py.
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Review Exercises for Chapter 1

10/7

1/7). Solution: (1/7,10/7)

), Solution: (3 — 2z, z3)

1 3619 - 1213 - 19
"\-2 314 071{10 01
9 3619 - 1 213
"\2 416 00]O0
3. (_g 161 }2) — ((1) —(2) .lg) No solution.
11 2
4. -1 2 0

1 2 1 11
2 —-10-30
-3 2 3|8 0 56

Solution: (—1/3,0,7/3)

1 1110 11
5. 2-12(0]—10 -3
-3 2310 0 5

Solution: (0,0,0)

2 11
6. 4] —10 -3
- 2 0 5

Solution: (0,0,2)

1 1112
7. 2-12|4]—
-1 4113

Solution: (-1/2,0,5/2)
11

1 0 11
8. 2 -1 2 — | - -3
-1 4110 -5

Solution: (0,0,0)

o (2 1-3]|0Y_ (11/2-3/72
41 10 0 -3 7

Solution: (z3/3,7z3/3, z3)

1
2
3

14

O -

(=)

—

— N
1

S = =

— N =

N O

———
S O -
l
Lo =
N O -

O =

[

10.

o

101
—-1010
006

o)~

0
0

[e=] o o
— — —
[en] o Y O =

(=]
p—
o

—

2 100
0)J—-1010
14 0 1

o

-1/2

St O N
N——
————
OO =
O - O
-0 O

5/2

(s

b

). Solution: (0,0)

-1/3

7/3

|

).

Instructor’s Manual
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) . No solution.

2
-1
-1

). Solution: (0,2,-1,3)

0
2
1
3

0

1

0
0001

~~~
— =
cooo =)
NN .
— -
' — o
1 N
— o Mmoo =1
[e]
oO— oo =
~goo =
SNS—— 2
ﬁ ——
cooo
———
COO0O oo o
- No SO -0
1
oo o
— o Mm,m
! — o oo
— = O O N ——————
]
- OO OO q
N __~
~/
1 cococo
TN O A
cooco !
cCoOo O
—
- o~oco
=N Hoo0Oo
SNS—
— M
1 1 \q
— N o
S———
o
—f

O OO

—~ N O

— o ™
O — O
- O O

(=== ]

- N O
- O ™M
— - O

— o O

S O O

14.9_.
— o —
1
— o <

— AN N

14.

). Solution: (—3z4, —2z4, 424, 24)

)

5 07
2-13

0
0
0

3
2
-4

00
10
01

1
— 10
0

-21 —6 3
15. 3 04]=10-12
23 6 9

)+(

6. (
17, 5(

|
(
(

30 7
0414

(

Il

204
-258

03
2-16

1

10 515 —6
-51020 ] —{ 15
-30 525
16 2 3
—2010 -1

)-(35)

213
-124
—-615

-36 8 16

16 19
329

(

28 G)

8. (
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571
1o, (2315)[203) _ (173941
"\0624/{100)  \142042
056
235 0-12 ~26 16 35
20. | ~164 3 12| =|-181930
106/ \-7 35 —42 17 32
71
91 <103—15> _?g _(910)
216 25 56 30 32
23

22.

&

1)) (3

23. Reduced row echelon form.
24. Row echelon form.
25. Neither.

26. Reduced row echelon form.

28 -2 14-1 14 -1
2. (1 0 —6) - (0 4 5) - <0 1 5/4) (ROW echelon form)

— 10 -6 Reduced row echelon form
015/4

1-1 24 1-1 2 4 1-1 2 4
-1 2 03]—-|0 12 7]—=1(0 1 2 7
2 3-11 0 5-5-7 0 0-15—42

1-12 4
— 10 12 7] (Row echelon form)
0 0114/5

104 11 100 -1/5
—1012 7] —-1010 7/5] (Reduced row echelon form)

00114/5 001 14/5

28.

2]
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w (2= (0 -(52)

23 . 1 (43

det (__14)_8+3—11,Inverse. 1 (1 2)

-1 2 1-2 . .
30. 9 _4) — (0 0) Not invertible.
1 2 0
0-3-1 011/3 — 011/3
0-5 1 008/3
1 0 1 2 0] 100 10 -2/3
0 0Oj—(0-3-1}-210]—=]01 1/3
0 1 0-51]-301 00 8/3
-1/4 1/4 1/4 -2 2 2
5/8 -1/8 -1/8 5-1-1
1/8 -5/8 3/8 1-5 3
-12 0 1-2 0 1-2 0
41-3] -0 9-3] -0 1-1/3]; Not invertible
24 -3 0 9-3 0 0 0

102 102

033 =011

012 001
100 102
010]—=1]033
001 012

5/6 2/3 -2 1 5
1/3 2/3 -1 |; Inverse: g 2
1/6 -1/3 1 -1

1-3 T _ _ 1 _ 1

(179) (2) = (1): wanmsrommoat=

x| _ 1 53 4\ [ 41/11

xy ) 11\ -21 7)) \-1/11

12 0 z 3 1 -2 2 2
35. 1 21-1 z3 | = | =1 |; From problem 31, A-1 = 5—-1-1
31 1) \zs 7 8\ 1-5 3
T 1 -2 2 2 3 3/4

T2 | =g 5—-1-1 -1] = 9/8

T3 1-5 3 7 29/8

2/3 -1/3 0
1/3 -5/3 1

-1/3 2/3 0)

0| =

; Inverse:

1/2 00
1/6 1/3 0
-1/6 -1/3 1)

[y



160 Chapter 1 Systems of Linear Equations and Matrices

36.

37.

38.

39.

40.

41.

42.

43.

(9%

47.

-3

204
-131
012

7
—4
5

z
T3
T3

() )

2 -1
A*=13 0 ]; A is not symmetric or skew-symmetric.
1 2
Al = (é 2), A is symmetric.
2 3 1
At =| 3 =6 =5 |; A is symmetric.
1-5 9
0-5—-6
A= 5 0—4}; A is skew-symmetric
6 4 0
1-1 4 6
Al = (—i g g _; ; A Is symmetric
6 7-8 9
0-11 1
1 01-2
t_
A= (—1 10-1
1-21 0

120
010
001

s

|
)

1-3
01

z3 1 5 4 -12 7 —41/6
T2 | =g 2 4 -6 —4 4 =1-16/3
z3 -1-2 6 5 31/6

- (
o (

1
) ; From problem 33, A~! = 5 <

)

-501

0
1
0

5 4-12
2 4 —6
-1-2 6

|

; A is not symmetric or skew-symmetric.

100
010

|

10
00
01

)

51. The elementary row operations to reduce the matrix to the identity are:

3. Ry — 2R,

1. R1—*R1/2 2. Rz—-?R1+R2

() (G)(

10
-11

2 1

1

-1
1

20
01

)

Then ( _

0

01/2

)(

1
0

~1/2
1

)

4. R1 — R1+R2/2

" (
50 (

Instructor’s Manual

001
010

100)

10 0
01 0
00-3

|
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52. The elementary row operations are: 1. Ry — Ry — 2R, 2. R3 — R3 — 3R,
3. R3 - R3 - 2R2 4. R3 b d R3/17 5 R2 - Rz + 11R3 6 Rl nd Rl - 3R3

10 3 100 100 100 10 0 10 0
21-5]=1210 010 010 01 0 01-11
32 4 001 301 021 0017 00 1
103
x{010
001
53. The elementary row operations are: 1. Ry — R;/2 2. Ry —» Ry +4R,

man (273) = (39) (L) (472)

54. The elementary row operations are: 1. Ry — Ry — 2R 2. R3 — R3s — R,
3. Rs and Rz - R3

1-23 100 100 100 1-2 3
Then | 2 04 ] =1210 010 010 0 4-2
1 21 001 101 011 0 0 0

1-25 1-2 5 1-2 5

— Ry —2R — R —
55. A = g 57| TerRe-2Ral, | g} RemFRe-dRif, | 4
4-38 4-3 8/ —\o 5-12

1-2 5 1 00
Bs=Rs+5F2 {6 | 3| =U. Thus A= LU where L= [ 2 10 |. The system Ly = b, i.c.,
——\o0 0-27 4-51

1 00 U -1
(2 1 0) (yg) = ( 2) yields the equations y; = —1,2y; + y2 = 2,4y;1 — 5y2 + y3 = 5. Solving

Then

4-51) \ys 5

-1 1-2 5 Ty -1
weget yp =4,y3 =29 and y = 4 |. Now, from Ux =y,1e, | 0 =1 -3 zg | = 4 | we
29 0 0-27 z3 29

-7 -29

obtain z; —2z9+5z3 = —1, —1lxy—3z3 = 4, 2723 = 29. Solving we get 21 = —,z2 = , &3 = ETR

27T 9
76/27
The solution is x = =7/9 1.

-29/27
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2 5-2 2 5-2 2 5-=2
— - Rz — R3 - 3R
6.4 = a1 3| BTy 7] BTRT 0 17
6—-1 2 6 -1 2 0-16 8
25 =2 1 060
— R
Rs = R + 161, 01 7] =U. Thus A= LU where L= |2 10 }. The system Ly = b, i.e,,
00120 3-161
1 00 n 3
2 10 y2 | = | 0] yields the equations y; = 3,2y1 +y2 = 0,3y1 — 16y2 + y3 = 7. Solving we
3-161 Y3 7
3 25 =2 z 3
get yo = —6,y3 = —98 and y = —6 |. Now from Ux =y,1e, | 01 7 zo | = —6 | we
—98 00120 z3 -98
) . 167 -17 —49
obtain 2z145z9—2z3 = 3, 29+7x3 = —6,120z5 = —98. Solving we get z; = m,l‘g = —60—,x3 =50
167/120
The solution is | —17/60 |.
—49/60
0-1 4 Ry = Rs 1 3-2 R = Ry 3 5 8
57. A=13 5 8 3 5 8 1 3-2
1 3-2 0-1 4 0-1 4

Ry —» Ry - 1R, Rs—*R3+%Rz

3 5 8

14
0 3-%
0-1 4

010
Then P=| 001 ], PA

100

Il
N

1
Thus PA = LU where L = (%—
0

0 n -2
0 y2 | = | =1 | yields the equations y; = ~2, Ly1 +y2 = 1,
1

1
The system Ly = Pb, i.e., (%
0 3

-2
Z2y2 + ya = 3. Solving we get y» = Fys = Landy = (——%) Now, from Ux = y,ie.,

(

—47

we get 1 = =47, £ = 19, z3 = 121 The solution is ( 19).
1

2

Ty -2
) (1?2) = (—%) we obtain 3z, 4+ 5z + 8x3 = —2, 45172 — 13—4173 = —%, %.’L‘g = —141. Solving
1
I3 I

S O W
O Wik
|
Nle‘: oo



58.

59.

60.

Review Exercises for Chapter 1

03 2 (26 =5 X 2
Ry 2R Ry - R, — =R

12 4 "% 12 4] T2 o

26 —5 03 2 0

6
1
3
001 26 -5 2 6-5
Then P = [010 |, PA = 12 4] andU = 0—1‘1123—3 . Thus PA = LU where L =
0 0%

100 03 2
0
0].
1

The system Ly = Pb, i.e., (

O W
W= o

00
10
31

OVl =

n 10
ya | = 8 | yields the equations y; = 10, %yl +y, =
Y3 -2

10
8, —3y2 + y3 = —2. Solvingweget y» = 3,y3 = Tandy = ( 3) . Now, from Ux = y, i.e.,

7
2 6-5 z 10
0 -1 }3—3 zy | = 3 | we obtain 2z; + 6xy — 5z3 = 10, —zo + 12—31'3 =3, %xs = 7. Solving we
0 0% z3 7
2

364/43
get 1 = 38 25 = 538 23 = 12 The solution is | —38/43 |.
' 14/43

1-25 1-2 5 1-2 5

— R, — 2R R; — R3 - 4R
A = |o-57] BemBemRfy 4 g Pe-Re-dRif, | g
4-38 4-3 8 0 5-12

1-2 5 1 00
R*""R“"”Rz(O—l —3) = U. Thus A = LU where L = (2 10). The system Ly = b, ie.,

0 0-27 4-51

1 00 % -1
(2 1 0) (yz) = ( 2) yields the equations y; = —1,2y; + y» = 2,4y; — 5y2 + y3 = 5. Solving
4-51 Y3 5

-1 1-2 5 zy -1
we get yp =4,y3 =29 and y = 4 ]. Now, fromUx =y,ie, | 0 -1 -3 z9 | = 4] we
29 0 0-27 z3 29

obtain x; — 2z +5r3 = —1, —1lzy —3z3 = 4, —27x3 = 29. Solving we get z; = g,zg = ——§Z,a:3 = _2—?{9
76/27
The solution is x = =7/9 |.
—29/27
9 52 2 5-2 2 5-2
— Ry - 2R — Rs —
A = [an 3| BBy | ) BoR-SR, g
6 -1 2 6 -1 2 0-16 8
25 —2 1 00
R; — R <ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>